Augmenting mode-II fracture toughness of carbon fiber/epoxy composites through carbon nanotube grafting

2018 ◽  
Vol 204 ◽  
pp. 211-220 ◽  
Author(s):  
Sorab Khan ◽  
Harpreet Singh Bedi ◽  
Prabhat K. Agnihotri
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1881
Author(s):  
Kean Ong Low ◽  
Mahzan Johar ◽  
Haris Ahmad Israr ◽  
Khong Wui Gan ◽  
Seyed Saeid Rahimian Koloor ◽  
...  

This paper studies the influence of displacement rate on mode II delamination of unidirectional carbon/epoxy composites. End-notched flexure test is performed at displacement rates of 1, 10, 100 and 500 mm/min. Experimental results reveal that the mode II fracture toughness GIIC increases with the displacement, with a maximum increment of 45% at 100 mm/min. In addition, scanning electron micrographs depict that fiber/matrix interface debonding is the major damage mechanism at 1 mm/min. At higher speeds, significant matrix-dominated shear cusps are observed contributing to higher GIIC. Besides, it is demonstrated that the proposed rate-dependent model is able to fit the experimental data from the current study and the open literature generally well. The mode II fracture toughness measured from the experiment or deduced from the proposed model can be used in the cohesive element model to predict failure. Good agreement is found between the experimental and numerical results, with a maximum difference of 10%. The numerical analyses indicate crack jump occurs suddenly after the peak load is attained, which leads to the unstable crack propagation seen in the experiment.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
S. D. Faulkner ◽  
Y. W. Kwon

Fracture toughness tests were conducted for carbon composite scarf joints with and without carbon nanotube (CNT) reinforcement in order to study the effect of CNT on enhancing the fracture toughness of the scarf joint interface. Both mode I (i.e., opening mode) and mode II (i.e., shear mode) fracture tests were undertaken with and without CNT applied locally at the joint interface. During the study, the image correlation technique was used to examine the fracture mechanisms altered by the introduction of CNT. The experimental study showed that CNT increased the fracture toughness of the composite interface significantly, especially for the mode II fracture, with altering the fracture mechanism. On the other hand, there was no significant change on mode I fracture caused by CNT reinforcement. The enhancement of mode II fracture toughness was considered to result from the mechanical interlocking between polymers and CNT at the scarf joint interface.


Sign in / Sign up

Export Citation Format

Share Document