scholarly journals Effect of weld angle on the creep rupture life of ferritic/austenitic dissimilar weld interfaces under remote mode I fracture

2019 ◽  
Vol 218 ◽  
pp. 106606 ◽  
Author(s):  
Jianan Hu ◽  
Elsiddig Elmukashfi ◽  
Takuya Fukahori ◽  
Toshihide Igari ◽  
Yasuharu Chuman ◽  
...  
2018 ◽  
Vol 191 ◽  
pp. 344-364 ◽  
Author(s):  
Jia-nan Hu ◽  
Takuya Fukahori ◽  
Toshihide Igari ◽  
Yasuharu Chuman ◽  
Alan C.F. Cocks

2000 ◽  
Author(s):  
Leishan Chen ◽  
Peter Ifju ◽  
Bhavani Sankar

2019 ◽  
Vol 135 (5) ◽  
pp. 33-41 ◽  
Author(s):  
Minami KATAOKA ◽  
Yuzo OBARA ◽  
Leona VAVRO ◽  
Kamil SOUCEK ◽  
Sang-Ho CHO ◽  
...  

1994 ◽  
Vol 23 (1) ◽  
pp. 1-11 ◽  
Author(s):  
P. Rathinam ◽  
R. Narayanan ◽  
G. Jayarama Rao

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Jyotikalpa Bora ◽  
Sushen Kirtania

Abstract A comparative study of elastic properties and mode I fracture energy has been presented between conventional carbon fibre (CF)/epoxy and advanced carbon nanotube (CNT)/epoxy laminated composite materials. The volume fraction of CNT fibres has been considered as 15%, 30%, and 60% whereas; the volume fraction of CF has been kept constant at 60%. Three stacking sequences of the laminates viz.[0/0/0/0], [0/90/0/90] and [0/30/–30/90] have been considered in the present analysis. Periodic microstructure model has been used to calculate the elastic properties of the laminated composites. It has been observed analytically that the addition of only 15% CNT in epoxy will give almost the same value of longitudinal Young’s modulus as compared to the addition of 60% CF in epoxy. Finite element (FE) analysis of double cantilever beam specimens made from laminated composite has also been performed. It has been observed from FE analysis that the addition of 15% CNT in epoxy will also give almost the same value of mode I fracture energy as compared to the addition of 60% CF in epoxy. The value of mode I fracture energy for [0/0/0/0] laminated composite is two times higher than the other two types of laminated composites.


Author(s):  
T. Chen ◽  
C. M. Harvey ◽  
S. Wang ◽  
V. V. Silberschmidt

AbstractDouble-cantilever beams (DCBs) are widely used to study mode-I fracture behavior and to measure mode-I fracture toughness under quasi-static loads. Recently, the authors have developed analytical solutions for DCBs under dynamic loads with consideration of structural vibration and wave propagation. There are two methods of beam-theory-based data reduction to determine the energy release rate: (i) using an effective built-in boundary condition at the crack tip, and (ii) employing an elastic foundation to model the uncracked interface of the DCB. In this letter, analytical corrections for a crack-tip rotation of DCBs under quasi-static and dynamic loads are presented, afforded by combining both these data-reduction methods and the authors’ recent analytical solutions for each. Convenient and easy-to-use analytical corrections for DCB tests are obtained, which avoid the complexity and difficulty of the elastic foundation approach, and the need for multiple experimental measurements of DCB compliance and crack length. The corrections are, to the best of the authors’ knowledge, completely new. Verification cases based on numerical simulation are presented to demonstrate the utility of the corrections.


Author(s):  
Wenyan Gan ◽  
Hangshan Gao ◽  
Haiqing Pei ◽  
Zhixun Wen

Abstract According to the microstructural evolution during longterm thermal exposure at 1100 °C, the creep rupture life of Ni-based single crystal superalloys at 980 °C/270 MPa was evaluated. The microstructure was characterized by means of scanning electron microscopy, X-ray diffraction and related image processing methods. The size of γ’ precipitates and the precipitation amount of topologically close-packed increased with the increase in thermal exposure time, and coarsening of the γ’ precipitates led to the simultaneous increase of the matrix channel width. The relationship between the creep rupture life and the lattice misfit of γ/γ’, the coarsening of γ’ precipitate and the precipitation of TCP phase are systematically discussed. In addition, according to the correlation between γ’ phase evolution and creep characteristics during thermal exposure, a physical model is established to predict the remaining creep life.


2021 ◽  
Vol 96 ◽  
pp. 107122
Author(s):  
Mohamed Nasr Saleh ◽  
Nataša Z. Tomić ◽  
Aleksandar Marinković ◽  
Sofia Teixeira de Freitas

Sign in / Sign up

Export Citation Format

Share Document