A phase-field regularized cohesive zone model for quasi-brittle materials with spatially varying fracture properties

Author(s):  
Hui Li ◽  
Zhen-jun Yang ◽  
Bei-Bei Li ◽  
Jian-ying Wu
Author(s):  
Khuong D. Nguyen ◽  
Cuong-Le Thanh ◽  
Frank Vogel ◽  
H. Nguyen-Xuan ◽  
M. Abdel-Wahab

2016 ◽  
Vol 258 ◽  
pp. 157-160 ◽  
Author(s):  
Jiří Vala

Computational modelling of the crack growth in brittle and quasi-brittle materials used in mechanical, civil, etc. engineering applies the cohesive zone model with various traction separation laws; determination of micro-mechanical parameters comes then from static tests, microscopic observation and numerical calibration. Although most authors refer to ill-possedness and need of artificial regularization in inverse problems (identification of material parameters), some difficulties originate even in nonlinear formulations of direct and sensitivity problems. This paper demonstrates the possibility of proper analysis of the existence of a weak solution and of the convergence of a corresponding numerical algorithm for such model problem, avoiding non-physical assumptions.


2013 ◽  
Author(s):  
Pritam Chakraborty ◽  
S. Bulent Biner

Fracture properties of Reactor Pressure Vessel (RPV) steels show large variations with changes in temperature and irradiation levels. Brittle behavior is observed at lower temperatures and/or higher irradiation levels whereas ductile mode of failure is predominant at higher temperatures and/or lower irradiation levels. In addition to such temperature and radiation dependent fracture behavior, significant scatter in fracture toughness has also been observed. As a consequence of such variability in fracture behavior, accurate estimates of fracture properties of RPV steels are of utmost importance for safe and reliable operation of reactor pressure vessels. A cohesive zone based approach is being pursued in the present study where an attempt is made to obtain a unified law capturing both stable crack growth (ductile fracture) and unstable failure (cleavage fracture). The parameters of the constitutive model are dependent on both temperature and failure probability. The effect of irradiation has not been considered in the present study. The use of such a cohesive zone based approach would allow the modeling of explicit crack growth at both stable and unstable regimes of fracture. Also it would provide the possibility to incorporate more physical lower length scale models to predict DBT. Such a multi-scale approach would significantly improve the predictive capabilities of the model, which is still largely empirical.


Sign in / Sign up

Export Citation Format

Share Document