Frictional behavior of granular materials exposed to dynamic normal load

2021 ◽  
pp. 106414
Author(s):  
Wengang Dang ◽  
Junpeng Chen ◽  
Linchong Huang ◽  
Jianjun Ma ◽  
Xiang Li
Author(s):  
J. Quintelier ◽  
P. Samyn ◽  
P. De Baets ◽  
J. Degrieck

On a Pin-on-Disc test rig with composite disc and steel pin tribological experiments were done on pultruded glass fiber reinforced polymer matrix composites plates. The wear and frictional behavior strongly depends on the structure. Also the normal load plays an important role in the frictional behavior, which is of greater importance than the speed. The formation of a thin polymer film onto the wear track results in a lowering of the coefficient of friction with 20%.


1998 ◽  
Vol 120 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Valery N. Bliznyuk ◽  
Mark P. Everson ◽  
Vladimir V. Tsukruk

Frictional characteristics of several types of boundary lubricants were tested using scanning probe microscopy (SPM). These include Langmuir monolayers of stearic acids (STA), their cadmium salts (STCd), self-assembling monolayers (SAMs) of alkylchlorsilanes, and complexes of STA with rigid naphthoylene benzimidazole (x-NBI) fragments. We observed that a Langmuir monolayer deposited on a silicon surface had a very low friction coefficient against a silicon nitride tip (about 0.01–0.05) but also low mechanical stability. SAMs were found to be much more stable but had the drawback of growth in the friction coefficient at high sliding velocities. Composite NBI/STA monolayers were much more stable and were not damaged by the highest normal load applied. The frictional behavior of different monolayers was analyzed in relation to their structural organization (the type of tethering to the surface and packing density). We introduced a figure of merit (FOM) parameter which allowed comparison of frictional properties of very different lubricant materials to those of the supporting substrate. For Langmuir monolayers the FOM increased strongly with surface packing density whereas for SAMs and x-NBI/STA complexes it possessed a maximum at surface densities in the range 3.5–4.5 molecules per nm2. Because of the possibility of tailoring the surface packing density of aliphatic tails in the complexes, they are a promising alternative to both LB films and SAMs. For such composite monolayers, the surface packing density can be optimized to give a desired frictional behavior.


2013 ◽  
Vol 1505 ◽  
Author(s):  
Emil J. Sandoz-Rosado ◽  
Elon J. Terrell

ABSTRACTIn this study, the failure mechanisms of graphene under sliding are examined using atomistic simulations. A 6nm diameter diamond tip is slid (at a controlled normal load) over a graphene monolayer that is adhered to a semi-infinite silicon substrate. The impact of tip adhesion on the wear and frictional behavior of graphene is studied by comparing two diamond tips, one of which has been hydrogen-passivated and the other which is bare carbon. By contrasting the passivated and unpassivated tips, the interplay of adhesive and abrasive wear on the graphene membrane can also be compared. The results of this work indicate that chemical bonding between the tip and the graphene greatly exacerbates tearing in the graphene monolayer by plowing ahead of the indenter, causing material build-up and increasing effective contact area.


1998 ◽  
Vol 77 (5) ◽  
pp. 1413-1425 ◽  
Author(s):  
Dietrich E.Wolf, Farhang Radjai, Sabine Dipp
Keyword(s):  

2020 ◽  
Vol 63 (6) ◽  
pp. 545-561
Author(s):  
V N Dolgunin ◽  
A N Kudi ◽  
M A Tuev

Sign in / Sign up

Export Citation Format

Share Document