graphene monolayer
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 98)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 131 (2) ◽  
pp. 024303
Author(s):  
M. Miniya ◽  
O. Oubram ◽  
A. G. El Hachimi ◽  
L. M. Gaggero-Sager

2022 ◽  
Author(s):  
Michel Wehrhold ◽  
Tilmann J Neubert ◽  
Tobias Grosser ◽  
Kannan Balasubramanian

Electrochemical hydrogen evolution reaction (HER) at single graphene sheets has been investigated widely either in its pristine form or after chemical modification. One important challenge is the long-term stability of single graphene sheets on Si/SiO2 substrates under HER. Previous reports have found that due to stress developing under gas evolution, the sheets tend to break apart, with a very low lifetime limited to just a few cycles of HER. Here, we show through appropriate electrode preparation that it is possible to achieve highly durable single graphene electrodes on insulating substrates, which can survive several hundreds of HER cycles with virtually no damage to the sp2-carbon framework. Through systematic investigations including atomic force microscopy, Raman spectroscopy and electroanalysis, we show that even after so many cycles, the sheet is physically intact and the electron transfer capability of the electrodes remain unaffected. This extremely high stability of a single atomic sheet of carbon, when combined with appropriate chemical modification strategies, will pave way for the realization of novel 2D electrocatalysts.


2022 ◽  
Author(s):  
Won-Hwa Park

Abstract Graphene can be used as a starting material for the synthesis of useful nano-complexes for flexible, transparent electrodes, therapeutic, bio-diagnostics and bio-sensing. In order to apply graphene in the medical field, chemical vapor deposition (CVD) method has been mainly utilized considering its large and near-homogenious carbon constituents. Especially, the less degree of perturbation of graphene monolayer (GM), which is followed by the underneath catalytic Cu surface morphology, is very crucial in terms of providing the suspended GM and relatively fluent lateral carrier mobility with lower sheet resistance value. In this work, we can suggest a surface-Enhanced Raman Spectroscopic (SERS) indicator in a quantitative way on the status of z-directional morphological corrugation of a CVD–grown GM (CVD-GM) by applying a Nanoparticle-on-Mirror (NPoM) system composed of Au nanoparticle (NP) / CVD-GM / Au thin film (TF) plasmonic junction structure. A new (or enhanced) Radial Breathing Like Mode (RBLM) SERS signal around ~150 cm-1 from CVD-GM spaced in NPoM is clearly observed by employing a local z-polarized incident field formed at the Au NP–Au TF plasmonic gap junctions. With this observation, the value of I[out-of-plane, RBLM] / I[in-plane, [2D] at certain domains, it can be suggested as a new optical nano-metrology value to relatively determine between lower z-directional morphological corrugation (or protrusion) status of a CVD-GM spaced in our NPoM system (lower I[RBLM] / I[2D] value) and higher degree of lateral carrier mobility of the CVD-GM associated with lower sheet resistance values as a result of higher blue-shifted Raman in-plane (G, 2D) peak maximum position. Furthermore, we will also expect the bio-sensing performances by utilizing the high specific surface area and ultrahigh flexibility of the CVD-GM in one of the future prospective works such as pressure-strain, strain-to-electricity and chemical-coupled sensor via I[RBLM] / I[2D] values.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 216
Author(s):  
Bo Liu ◽  
Wenjing Yu ◽  
Zhendong Yan ◽  
Pinggen Cai ◽  
Fan Gao ◽  
...  

In this study, we investigate a physical mechanism to improve the light absorption efficiency of graphene monolayer from the universal value of 2.3% to about 30% in the visible and near-infrared wavelength range. The physical mechanism is based on the diffraction coupling of surface plasmon polariton resonances in the periodic array of metal nanoparticles. Through the physical mechanism, the electric fields on the surface of graphene monolayer are considerably enhanced. Therefore, the light absorption efficiency of graphene monolayer is greatly improved. To further confirm the physical mechanism, we use an interaction model of double oscillators to explain the positions of the absorption peaks for different array periods. Furthermore, we discuss in detail the emerging conditions of the diffraction coupling of surface plasmon polariton resonances. The results will be beneficial for the design of graphene-based photoelectric devices.


Author(s):  
Diogo José Horst ◽  
Charles Adriano Duvoisin ◽  
Rogério De Almeida Vieira ◽  
Jesús Alejandro Arizpe ◽  
Esther Alejandra Huitrón Segovia ◽  
...  

The main objective of this work was to study the synthesis and characteristics of two-dimensional heterostructures (2D/2D) using pure molybdenum disulfide (MoS[Formula: see text] and doped with phosphorus at 5% and 15% combined with graphene oxide (GO) and graphene monolayer. These were deposited on silicon and copper substrates using two different deposition methods: Microdrop casting and chemical vapor deposition. Chemical and structural information of the samples were characterized by Raman spectroscopy, Energy Dispersion X-ray Spectroscopy (EDS), Scanning Electron Microscopy (SEM) and Kelvin Probe Force Microscopy (KPFM). The results prove the synergy between the materials resulting in electronic coupling, making this system potential for applications in electronic devices such as sensors, resistors and capacitors.


2022 ◽  
Vol 23 (1) ◽  
pp. 543
Author(s):  
Magdalena Kaźmierczak ◽  
Bartosz Trzaskowski ◽  
Silvio Osella

An artificial leaf is a concept that not only replicates the processes taking place during natural photosynthesis but also provides a source of clean, renewable energy. One important part of such a device are molecules that stabilize the connection between the bioactive side and the electrode, as well as tune the electron transfer between them. In particular, nitrilotriacetic acid (NTA) derivatives used to form a self-assembly monolayer chemisorbed on a graphene monolayer can be seen as a prototypical interface that can be tuned to optimize the electron transfer. In the following work, interfaces with modifications of the metal nature, backbone saturation, and surface coverage density are presented by means of theoretical calculations. Effects of the type of the metal and the surface coverage density on the electronic properties are found to be key to tuning the electron transfer, while only a minor influence of backbone saturation is present. For all of the studied interfaces, the charge transfer flow goes from graphene to the SAM. We suggest that, in light of the strength of electron transfer, Co2+ should be considered as the preferred metal center for efficient charge transfer.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 67
Author(s):  
George Kalosakas ◽  
Nektarios N. Lathiotakis ◽  
Konstantinos Papagelis

The potential use of graphene in various strain engineering applications requires an accurate characterization of its properties when the material is under different mechanical loads. In this work, we present the strain dependence of the geometrical characteristics at the atomic level and the Raman active G-band evolution in a uniaxially strained graphene monolayer, using density functional theory methods as well as molecular dynamics atomistic simulations for strains that extend up to the structural failure. The bond length and bond angle variations with strain, applied either along the zigzag or along the armchair direction, are discussed and analytical relations describing this dependence are provided. The G-mode splitting with strain, as obtained by first principles’ methods, is also presented. While for small strains, up to around 1%, the G-band splitting is symmetrical in the two perpendicular directions of tension considered here, this is no longer the case for larger values of strains where the splitting appears to be larger for strains along the zigzag direction. Further, a crossing is observed between the lower frequency split G-mode component and the out-of-plane optical mode at the Γ point for large uniaxial strains (>20%) along the zigzag direction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xingdan Sun ◽  
Shihao Zhang ◽  
Zhiyong Liu ◽  
Honglei Zhu ◽  
Jinqiang Huang ◽  
...  

AbstractInterfacial moiré superlattices in van der Waals vertical assemblies effectively reconstruct the crystal symmetry, leading to opportunities for investigating exotic quantum states. Notably, a two-dimensional nanosheet has top and bottom open surfaces, allowing the specific case of doubly aligned super-moiré lattice to serve as a toy model for studying the tunable lattice symmetry and the complexity of related electronic structures. Here, we show that by doubly aligning a graphene monolayer to both top and bottom encapsulating hexagonal boron nitride (h-BN), multiple conductivity minima are observed away from the main Dirac point, which are sensitively tunable with respect to the small twist angles. Moreover, our experimental evidences together with theoretical calculations suggest correlated insulating states at integer fillings of −5, −6, −7 electrons per moiré unit cell, possibly due to inter-valley coherence. Our results provide a way to construct intriguing correlations in 2D electronic systems in the weak interaction regime.


Sign in / Sign up

Export Citation Format

Share Document