Strain gradient effects on flexural strength design of normal-strength concrete columns

2011 ◽  
Vol 33 (1) ◽  
pp. 18-31 ◽  
Author(s):  
J.C.M. Ho ◽  
J. Peng
2020 ◽  
Vol 23 (16) ◽  
pp. 3481-3495
Author(s):  
Junlong Yang ◽  
Jizhong Wang ◽  
Ziru Wang

Due to the influence of “arching action” in fiber-reinforced polymer (FRP) partially confined concrete columns as a result of the unconfined regions, the confinement of the concrete columns wrapped with discrete FRP strips is less efficient when compared with full wrapping schemes. This study comprehensively investigates the difference of the the confinement mechanism between fully and partially FRP confined circular normal-strength concrete and thus presents a new design-oriented model to predict the stress–strain relationships of partially FRP confined normal-strength concrete. The formulas used to determine the strength and corresponding strain of several key points on the stress–strain curves are also proposed by the regression analysis according to a reliable test database from the relevant literature. Besides, another selected database including 100 FRP partially wrapped circular concrete columns is also collected for model verification. The results show that better performance can be achieved by the new model compared with the selected models in predicting the ultimate conditions of partially FRP confined concrete. Finally, some specimens are chosen to assess the performance of the new model in predicting the complete axial stress–strain curves. The comparisons reveal that satisfactory accuracy and good agreement can be achieved between the theoretical predictions and experimental observations.


2020 ◽  
Vol 6 (3) ◽  
pp. 563-575
Author(s):  
Hussein Talab Nhabih ◽  
Ahmed M. Hussein ◽  
Marwa Marza Salman

This study investigated a modern composite material, which is a short geopolymer concrete column (GPCC) reinforced by GFRP bars. The structural performances of GPCC subjected to eccentric load were studied and compared to the normal strength concrete column (NSCC) reinforced by steel bars. In this study, the primary experimental parameters were the reinforcement bars types, load eccentricity, and concrete types. Seven short columns were tested: three normal strength concrete columns reinforced by steel bars, three geopolymer concrete columns reinforced by GFRP bars and one normal strength concrete column without reinforcement. The model dimensions chosen in the present study was a square section of 130×130 mm and a total height of 850 mm. It was shown that the steel bars contribute about 16.47% of column capacity under concentric load. Comparing with the normal strength concrete column, a geopolymer concrete column reinforced by GFRP bars showed a little increase in ultimate load (5.17%) under concentric load. Under the load eccentricity of 130 mm, a geopolymer concrete column reinforced by GFRP bars showed a significant increase in the ultimate load (69.37%). Under large eccentricity, a geopolymer concrete column reinforced by GFRP bars has an outstanding effect on the columns' ultimate load capacity. Also, the sine form can be utilized for GPCC to find the lateral deflection along with the column high at different load values up to the failure.


Sign in / Sign up

Export Citation Format

Share Document