Experimental study on the influence of concrete cracking on timber concrete composite beams

2015 ◽  
Vol 84 ◽  
pp. 362-367 ◽  
Author(s):  
Frank Schanack ◽  
Óscar Ramón Ramos ◽  
Juan Patricio Reyes ◽  
Andrés Alvarado Low
2019 ◽  
Vol 208 ◽  
pp. 454-465 ◽  
Author(s):  
Wenjie Ge ◽  
Ashraf F. Ashour ◽  
Dafu Cao ◽  
Weigang Lu ◽  
Peiqi Gao ◽  
...  

2019 ◽  
Vol 22 (11) ◽  
pp. 2476-2489 ◽  
Author(s):  
Pengjiao Jia ◽  
Wen Zhao ◽  
Yongping Guan ◽  
Jiachao Dong ◽  
Qinghe Wang ◽  
...  

This work presents an experimental study on the flexural behavior of steel tube slab composite beams subjected to pure bending. The main design elements considered in the work are the flange thickness, reinforcement ratio of high strength bolts, spacing between the tubes, and transverse patterns of the tube connections. Based on nine flexural experiments on simply supported steel tube slab specimens, the failure process and crack development in steel tube slab specimens, and their load–deflection curves are investigated. The results of the laboratory tests show that the welding of the bottom flange significantly improves the flexural capacity of the steel tube slab structure. In addition, a lower concrete’s compressive strength improves the ductility of the steel tube slab specimens. Moreover, the flexural capacities predicted from the design guidelines are in good agreement with the experimental test results. Finally, based on the numerical simulations using the ABAQUS software, a numerical model is established to further investigate the effect of the additional parameters on the flexural capacity of steel tube slab structures. The numerical results suggested that the diameter of the steel bolts and the reinforcement ratio have a limited effect on the flexural bearing capacity of the steel tube slab beams, and the ultimate bearing capacity increases linearly along with increase in the diameter of the steel bolts and the reinforcement ratio in a certain range.


2020 ◽  
Vol 20 (13) ◽  
pp. 2041007
Author(s):  
Rodrigo Gonçalves ◽  
Dinar Camotim ◽  
David Henriques

This paper reports the most recent developments concerning Generalized Beam Theory (GBT) formulations, and corresponding finite element implementations, for steel-concrete composite beams. These formulations are able to perform the following types of analysis: (i) materially nonlinear analysis, to calculate the beam load-displacement response, up to collapse, including steel plasticity, concrete cracking/crushing and shear lag effects, (ii) bifurcation (linear stability) analysis, to obtain local/distortional bifurcation loads and buckling mode shapes of beams subjected to negative (hogging) bending, accounting for shear lag and concrete cracking effects and (iii) long-term service analysis including creep, cracking and arbitrary cross-section deformation (which includes shear lag) effects. The potential (computational efficiency and accuracy) of the proposed GBT-based finite elements is illustrated through several numerical examples. For comparison purposes, results obtained with standard finite strip and shell/brick finite element models are provided.


1999 ◽  
Vol 125 (5) ◽  
pp. 495-502 ◽  
Author(s):  
Madhusudan Khuntia ◽  
Subhash C. Goel

Sign in / Sign up

Export Citation Format

Share Document