scholarly journals Finite element analysis of concrete-filled steel tube (CFST) columns with circular sections under eccentric load

2017 ◽  
Vol 148 ◽  
pp. 387-398 ◽  
Author(s):  
Y. Ouyang ◽  
A.K.H. Kwan ◽  
S.H. Lo ◽  
J.C.M. Ho
Author(s):  
Guochang Li ◽  
Zhichang Zhan ◽  
Zhijian Yang ◽  
Yu Yang

The concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load were investigated by the finite element analysis software ABAQUS. The working mechanism of the composite columns which is under bi-axial eccentric load are investigated by using the stress distribution diagram of steel tube concrete and the I-shaped CFRP profiles. In this paper, the main parameters; eccentric ratio, steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate of the specimens were investigated to know the mechanical behavior of them. The interaction between the steel tube and the concrete interface at different characteristic points of the composite columns were analyzed. The results showed that the ultimate bearing capacity of the concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load decrease with the increase of eccentric ratio, the ultimate bearing capacity of the composite columns increase with the increase of steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate. The contact pressure between the steel tube and the concrete decreased from the corner zone to the flat zone, and the contact pressure decreased from the mid-height cross section to other sections.


2012 ◽  
Vol 193-194 ◽  
pp. 1461-1464
Author(s):  
Bai Shou Li ◽  
Ai Hua Jin

Based on the characteristics of the special-shaped concrete-filled steel tubes and consideration of material nonlinearity of constitutive relation, stimulation of 6 T-shaped thin-walled ribbed and un-ribbed concrete-filled steel tube short columns is implemented, as well as comparable analysis of stress, strain, displacement and bearing capacity, through the finite element analysis software ANSYS. The result indicates that the rib can effectively improve the ductility, delaying the buckling occurs, which enhances the core concrete confinement effect, so as the stimulated ultimate bearing capacity which is greater than nominal ultimate bearing capacity.


2014 ◽  
Vol 525 ◽  
pp. 568-572
Author(s):  
Yang Feng Wu ◽  
Hong Mei Zhang

A new composite strengthening method that the CFST short column was strengthened with concrete filled steel tube was presented. Through the finite element analysis of five specimens with strengthening circular concrete filled steel tube columns and a specimen without strengthening circular concrete filled steel tube to explore the impact of the outer layer of concrete strength grade, external pipe wall thickness for the ultimate bearing capacity of concrete filled steel tube columns. The results show that with the increase of the outer pipe wall thickness, double concrete filled steel tube column yield strength and ultimate strength have increased. As the outer concrete strength grade increased as the specimen bearing capacity increased. When the concrete strength grade greater than C40, the improvement of concrete strength for specimen ultimate bearing capacity is not great.


Author(s):  
Li Dong ◽  
Dongli Sun ◽  
Yizhuo Zhang

<p>With the fast development of design and calculation methods, the loads and checking requirements of the bridge are constantly improving, and the reassessment of aged bridges is necessary in order to estimate the residual load capacity and performance of these structures. By using new design technologies and durability concepts, through the refined spatial finite element analysis of a 100 m span concrete-filled steel tube arch bridge designed in 2003, the reduction of the load capacity caused by the change of loads and codes is calculated; the errors caused by the lack of design and calculation methods are compared; the decrease of load capacity caused by durability degradation in 10 and 20 years is estimated. The method can effectively evaluate how the aged bridges functions now, so that it can provide guidance for the future operation and maintenance of the aged bridges.</p>


2011 ◽  
Vol 311-313 ◽  
pp. 1889-1893
Author(s):  
Ya Wen Du ◽  
Hong Yu Lin

Finite element analysis on three trusses was carried out in order to study the performance of combined truss with steel tube and concrete filled steel tube. The first specimen was a RHS truss, the second one was a combined truss with steel tube and concrete filled steel tube, and the third one was a concrete-filled steel tube truss. The results show that the finite element model can reflect the static performance of combined truss and can carry out the affective parameters analysis, which can offer theory evidence for engineering application of combined truss. The damage of three trusses was all due to the joint failure and the failure mode was all punishing shearing failure, but the concrete filled changed by the failure place of joints. The bearing capacity of three trusses was controlled by the jionts and the strength and stiffness of jionts were increased by the concrete filled in the chord, therefore the bearing capacity of trusses was increased while the deformation of trusses was decreased. In combined truss with steel tube and concrete filled steel tube, the concrete-filled steel tube joints can improve the bearing capacity and the steel tube joint can satisfy the requirements of deformation, which have obvious advantages in the engineering application.


Sign in / Sign up

Export Citation Format

Share Document