Residual ultimate strength assessment of double hull oil tanker after collision

2017 ◽  
Vol 148 ◽  
pp. 704-717 ◽  
Author(s):  
Joško Parunov ◽  
Smiljko Rudan ◽  
Branka Bužančić Primorac
2021 ◽  
pp. 121-126
Author(s):  
M.Z. Muis Alie ◽  
M. Fathurahkman ◽  
Juswan ◽  
F.A. Prasetyo

2018 ◽  
Vol 177 ◽  
pp. 01030
Author(s):  
Muhammad Zubair Muis Alie ◽  
Juswan ◽  
Wahyuddin ◽  
Taufiqur Rachman

The objective of the present research is to study the ultimate strength of ship’s hull considering cross section and beam finite element under longitudinal bending. The single hull bulk carrier and double hull oil tanker are taken to be analysed. The one-frame space of ship is considered in the calculation. The cross section of ship’s hull is divided into element composed plate and stiffened plate. The cross section is assumed to be remained plane and the simply supported is imposed to both side of the cross section. The longitudinal bending moment is applied to the cross section for hogging and sagging condition. The Smith’s method is adopted and implemented into the in-house program of the cross section and beam finite element to calculate the ultimate strength of ship’s hull. The result of the ultimate strength for hogging and sagging condition obtained by considering the cross section and beam finite element is compared with one another.


2018 ◽  
Vol 962 ◽  
pp. 012014 ◽  
Author(s):  
Samuel Izaak Latumahina ◽  
Muhammad Zubair Muis Alie ◽  
Ganding Sitepu

Author(s):  
Arlinda Verawati Lukman ◽  
Juswan ◽  
Muhammad Zubair Muis Alie ◽  
Amalia Ika Wulandari

2005 ◽  
Author(s):  
Haihong Sun ◽  
Xiaozhi Wang

Floating production, storage and offloading systems (FPSOs) have been widely used for the development of offshore oil and gas fields because of their attractive features. They are mostly ship- shaped, either converted from existing tankers or purposely built, and the hull structural scantling design for tankers may be applicable to FPSOs. However, FPSOs have their unique characteristics. FPSOs are sited at specific locations with a dynamic loading that is quite different from those arising from unrestricted service conditions. The structures are to be assessed to satisfy the requirements of all in-service and pre-service loading conditions. The fundamental aspects in the structural assessment of FPSOs are the buckling and ultimate strength behaviors of the plate panels, stiffened panels and hull girders. The focus of this paper is to address the buckling and ultimate strength criteria for FPSO structures. Various aspects of the criteria have been widely investigated, and the results of the design formulae proposed in this paper have been compared to a very extensive test database and numerical results from nonlinear finite element analysis and other available methods. The procedures presented in this paper are based on the outcomes of a series of classification society projects in the development of buckling and ultimate strength criteria and referred to the corresponding classification society publications.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
A Cubells ◽  
Y Garbatov ◽  
C Guedes Soares

The objective of the present study is to develop a new approach to model the initial geometrical imperfections of ship plates by using Photogrammetry. Based on images, Photogrammetry is able to take measurements of the distortions of plates and to catch the dominant surface shape, including the deformations of the edges. Having this data, it is possible to generate faithful models of plate surface based on third order polynomial functions. Finally, the maximum load- carrying capacity of the plates is analysed by performing a nonlinear finite element analysis using a commercial finite element code. Three un-stiffened and four stiffened plates have been modelled and analysed. For each plate, two initial imperfection models have been generated one, based on photogrammetric measurements and the other, based on the trigonometric Fourier functions. Both models are subjected to the same uniaxial compressive load and boundary conditions in order to study the ultimate strength.


Sign in / Sign up

Export Citation Format

Share Document