Orthogonal distribution and dynamic amplification characteristics of partially prefabricated timber-concrete composites

2020 ◽  
Vol 219 ◽  
pp. 110693
Author(s):  
Wendel Sebastian ◽  
Steve Webb ◽  
Hussein Shabbir Nagree
2021 ◽  
pp. 136943322110032
Author(s):  
Lin Ma ◽  
Wei Zhang ◽  
Steve C.S. Cai ◽  
Shaofan Li

In this paper, the dynamic amplification factors (DAFs) of high-speed railway continuous girder bridges are studied. The vehicle-bridge interactions (VBIs) of 13 concrete continuous girder bridges with spans ranging from 48 to 130 m are analyzed, the influences of the train speed, the train marshalling and the bridge fundamental frequency on the DAF are investigated, and the DAF design standard for high-speed railway bridges is discussed. The results indicate that for the continuous beam bridge whose fundamental frequency is less than 3.0 Hz, the maximum DAF is no more than 1.15; while for the bridge examples with a fundamental frequency larger than 3.0 Hz, the maximum DAF reaches 1.25 because the resonance occurs at high train speed. The empirical formulas of the DAFs in the Japan Railway Technical Research Institute (JRTRI) code could provide a conservative estimation of the DAFs of high-speed railway continuous bridges.


2018 ◽  
Vol 136 ◽  
pp. 1247-1251
Author(s):  
Raúl Muñoz ◽  
Francisco J. Calvo ◽  
Sergio Sádaba ◽  
Ana M. Gil ◽  
Javier Rodríguez ◽  
...  

1994 ◽  
Vol 37 (2) ◽  
pp. 238-244 ◽  
Author(s):  
U-Hang Ki ◽  
Young-Jin Suh

AbstractIn this paper, under certain conditions on the orthogonal distribution T0, we give a characterization of real hypersurfaces of type A in a complex space form Mn(c), c ≠ 0.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Paolo Lonetti ◽  
Arturo Pascuzzo ◽  
Alessandro Davanzo

The dynamic behavior of tied-arch bridges under the action of moving load is investigated. The main aim of the paper is to quantify, numerically, dynamic amplification factors of typical kinematic and stress design variables by means of a parametric study developed in terms of the structural characteristics of the bridge and moving loads. The basic formulation is developed by using a finite element approach, in which refined schematization is adopted to analyze the interaction between the bridge structure and moving loads. Moreover, in order to evaluate, numerically, the influence of coupling effects between bridge deformations and moving loads, the analysis focuses attention on usually neglected nonstandard terms in the inertial forces concerning both centripetal acceleration and Coriolis acceleration. Sensitivity analyses are proposed in terms of dynamic impact factors, in which the effects produced by the external mass of the moving system on the dynamic bridge behavior are evaluated.


2003 ◽  
Vol 03 (01) ◽  
pp. 71-90 ◽  
Author(s):  
HUAN ZENG ◽  
CHARLES W. BERT

The dynamic amplification of a bridge response due to moving vehicles has been the subject of numerous research efforts. The efforts indicate a common difficulty in treating the dynamic interaction. This paper presents a semi-analytical technique to solve the bridge/vehicle interaction problem. A skew bridge, idealized as a discretely stiffened thin isotropic plate, is considered. The natural frequencies and mode shapes of the bridge are computed by a pb-2 Rayleigh–Ritz method. The mode superposition principle is then applied. The dynamic response of the bridge to moving vehicle excitation is expressed in terms of mode shapes and normal coordinates. A three-dimensional three-axle vehicle model is developed and consists of 11 independent degrees of freedom. The bridge and the vehicle are treated as two separate systems connected only at the time-varying contact points. An iteration technique is used to deal with the true coupling between the bridge and the vehicle and to satisfy the compatibility of forces and displacements at the contact points. At last, a parametric study is conducted to investigate the dynamic amplification factor. The influences of vehicle type, axle spacing, traffic condition, span length, and skew angle are examined.


2006 ◽  
Vol 84 (12) ◽  
pp. 759-769 ◽  
Author(s):  
Eugene OBrien ◽  
Yingyan Li ◽  
Arturo González

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Fei Han ◽  
Dan-hui Dan ◽  
Hu Wang

In order to study the coupled influence of deck pavement roughness and velocity on dynamic amplification factor, a 2-DOF 1/4 vehicle model is employed to establish the vehicle-bridge-coupled vibration system. The random dynamic load of running vehicle simulated by software MATLAB is applied on bridge deck pavement (BDP) through ANSYS software. Besides, the influence of BDP parameters on control stress under static load and random vibration load is analyzed. The results show that if the surface of BDP is smooth, the dynamic magnification coefficient would first increase and then decrease with increasing of vehicle velocity and reach its maximum value when v = 20 m/s; if the surface of BDP is rough, the maximal and minimum values of the dynamic amplification coefficient (DAC) occur, respectively, when the velocity reaches 10 m/s and 15 m/s. For a composite bridge deck with the cushion layer, the thickness of asphalt pavement should be not too thick or thin and better to be controlled for about 10 cm; with the increasing of cushion layer thickness, the control stress of deck pavement is all decreased and show similar change regularity under effect of different loads. In view of self-weight of structure, the thickness of the cushion layer is recommended to be controlled for about 4 cm.


Sign in / Sign up

Export Citation Format

Share Document