dynamic amplification
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 54)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 17 (3-4) ◽  
pp. 101-110
Author(s):  
Homer Buelvas ◽  
José M. Benjumea ◽  
Gustavo Chio

The rupture of a cable in cable-supported bridges is an accidental condition that should be considered during the design phase due the impact that this situation could have on the structural safety of the bridge and users. For that reason, design guidelines suggest carrying out a pseudo-static analysis where the failing cable is replaced by a load of the same magnitude as the pre-rupture tension but applied in the opposite direction and multiplied by a dynamic amplification factor (DAF) between 1.5 and 2.0. Previous studies in cable-stayed bridges have shown that the pseudo-static approach may not be suitable. Due to the wide use of extradosed bridges in infrastructure projects around the world, a computational analysis was performed in this investigation to estimate the dynamic amplification factors of extradosed bridge girders and cables when sudden failure of an extradosed cable occurs. The main goal of the study is to determine whether the pseudo-static approach suggested in the guidelines is acceptable. Linear response history analyses were performed by using computational models of extradosed bridges in which the girder stiffness and the suspension (lateral or central) and cable layout (fan or harp) of the cables were modified. From the analysis, the DAFs were calculated and compared to those recommended in the design guidelines. The calculated DAFs for the axial forces and bending moment in the girder of the bridges and for the axial forces in the extradosed cables were smaller than 2.0. However, in some cases the DAF for shear forces were higher than 2.0, especially when the girder stiffness was relatively low. The results indicate that the recommendations of the design guidelines are adequate for extradosed bridges, which is a result of the relatively high stiffness of the girder and low inclination of extradosed cables. Despite this, response history analyses like the one performed in this study are recommended to assess the response of the bridge under cable breakage.


2021 ◽  
pp. 107754632110429
Author(s):  
Zhenghui Qiao ◽  
Mei Cheng ◽  
Yawei Jin

Helmholtz sound source consists of Helmholtz resonator and speaker and belongs to a new type of high-intensity sound source. It has potential industrial advantage in the aerodynamic acoustic application for the large amplitude wave. Based on the lumped parameter principle of acoustic impedance, an acoustic theoretical model is suggested. The model reveals the amplification regulation of the sound source on the acoustic wave. Through the acoustic theoretical computation, a dynamic amplification and an amplification limitation are analyzed. The wave-amplification effect attributes to the parameter regulation of the macro, micro, and dynamic-varied sizes of the sound source. The repetitive motion of the vibrating membrane of speaker causes three working states of balance, squeeze, and stretch. The three states act as specific boundary conditions and demonstrate as three different theoretical curves. The theoretical boundary curves codetermine an experimental curve, which essentially limits the practical amplification effect. Nevertheless, the amplification gain of sound pressure amplitude reaches up to 1.8 times, and the potential maximum amplitude reaches up to 3600 Pa (164 dB). The two quantitative characteristics indicate the maximum capability of the sound source on wave-amplification effect. The control sensitivity of the complicated impedance parameters on wave amplification is 0.26 Pa/Hz. The acoustic theoretical model is valuable in the series aspects of the industrial design, manufacture, and application of the sound source. Especially, the theoretical innovation lays the foundation of solid to these aspects.


2021 ◽  

This paper presents experimental and theoretical investigations on progressive collapse behavior of steel framed structures subjected to an extreme load such as fire, blast and impact. A new capacity-based index is proposed to quantify robustness of structures. An energy-based theoretical model is also proposed to quantify the effect of concrete slabs on collapse resistance of structures. The experimental results show that the dynamic amplification factors of frames subject to impact or blast are much less than the conventional value of 2.0. The collapse process of frames in fire can be either static or dynamic depending on the restraint conditions and load levels. It is necessary to account for the failure time and residual strength of blast-exposed columns for assessing the collapse resistance of structures subject to explosion. Two collapse modes of steel frames under blast or impact are found: connection-induced collapse mode and column-induced collapse mode. In case of fire, a frame may collapse due to either column buckling or pulling-in effect of beams. The energy dissipation from elongation of slab reinforcement and additional resultant moment greatly contribute to the collapse resistance of structures.


2021 ◽  
Vol 11 (14) ◽  
pp. 6276
Author(s):  
Congkai Shen ◽  
Siyuan Yu ◽  
Junjie Luo ◽  
Kenn R. Oldham

This paper explores a concept for dynamic amplification of piezoelectric actuator motion using repeated impacts between the active transducer and a compliant amplification mechanism. The design shows good performance in amplifying vibration of a lead–zirconate–titanate (PZT) bimorph while down-converting the output frequency of motion from more than 150 Hz to less than 20 Hz. A simple dynamic model is used to identify the conceptual opportunities for impact-based amplification of PZT displacement. Experimental results are gathered from a prototype system with dimensions 55 mm × 22 mm × 1 mm. PZT displacement is amplified by a factor of more than 100 with near-periodic output oscillations at select input frequencies. Implications for leveraging the low-frequency output oscillations in small mobile robots are briefly discussed.


2021 ◽  
Vol 791 (1) ◽  
pp. 012141
Author(s):  
Zhenlin Liu ◽  
Xiaojun Zhang ◽  
Zhubing Zhu ◽  
Yaodong Xue

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Letícia Fleck Fadel Miguel ◽  
Guilherme Piva dos Santos

Road bridge designs are based on technical standards, which, to date, consider dynamic loading as equivalent static loads. Additionally, the few engineers who perform a dynamic analysis typically do not consider the effects of bridge-vehicle interaction and also simplify the road’s irregularity profile. Moreover, often, even when a simplified dynamic analysis is carried out and shows that there will be a high dynamic amplification factor (DAF), designers prefer to solve this problem by adopting high safety factors and thereby oversizing the bridge, rather than using energy dissipation devices that would allow reducing the amplitude of vibration. In this context, the present work proposes a complete methodology to minimize the dynamic response of road bridges by optimizing multiple tuned mass dampers (MTMD), taking into account the bridge-vehicle interaction, the random profile of pavement irregularities, and the uncertainties present in the coupled system and in the excitation. For illustrative purposes, the coupled vibration problem of a regular truck traveling on a random road profile over a typical Brazilian bridge is analyzed. Three different scenarios for the MTMD are considered. The proposed optimization problem is solved by employing the Whale Optimization Algorithm (WOA). The results showed the excellent ability of the proposed methodology, reducing the bridge’s DAF to acceptable values for all analyzed cases, considering or not the uncertainties present in the system. Furthermore, the results obtained by the proposed methodology are compared with results obtained using classical tuned mass damper (TMD) design methods, showing the best performance of the proposed optimization method. Thus, the proposed method can be employed to optimize MTMD, improving bridge design.


Sign in / Sign up

Export Citation Format

Share Document