Experimental and numerical investigation on the perforation resistance of double-layered metal shields under high-velocity impact of soft-core projectiles

2021 ◽  
Vol 228 ◽  
pp. 111467
Author(s):  
Riccardo Scazzosi ◽  
Marco Giglio ◽  
Andrea Manes
2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-689-Pr9-694
Author(s):  
J. Y. Tranchet ◽  
F. Collombet ◽  
F. Malaise

2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.


1980 ◽  
Vol 17 (10) ◽  
pp. 763-766 ◽  
Author(s):  
C. C. Chamis ◽  
J. H. Sinclair

1972 ◽  
Vol 5 (5) ◽  
pp. 812-813
Author(s):  
V. V. Kovriga ◽  
V. N. Chalidze

Sign in / Sign up

Export Citation Format

Share Document