electromagnetic launcher
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 57)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Nail Tosun ◽  
Anil Civil ◽  
Ahmet Yasin Oruc ◽  
Baran Yildirim ◽  
Bekir Mert Ozceylan ◽  
...  

2021 ◽  
Author(s):  
Nail Tosun ◽  
Ozan Keysan

Muzzle voltage is an essential diagnostic tool used in both contact resistance modeling and transition determination. However, it is challenging to stem the necessary meanings from the collected measurements. In this study, EMFY-3 launch experiments are used to model muzzle voltage characteristics to understand the transition mechanism better. These experiments have muzzle energies in the range between 1.69-2.85 MJ in ASELSAN Electromagnetic Launcher Laboratory. Six different launch tests with various rail current waveforms that ranged between 1.5-2.1 MA are used to investigate different scenarios. Some parameters which affect muzzle voltage are calculated with the 3-D Finite Element Method (FEM), i.e., rail mutual inductance $\mathrm{L_m}$. Muzzle voltages are decomposed into subsections; each subsection is calculated with proper models. Simulation results are coherent with experimental measurements. Findings are compared with previous studies, and differences are explained with possible reasons. Even though we could not conclusively resolve which physical quantity starts to transition, the study showed that transition does not form a specific muzzle velocity, armature action integral, or down-slope rail current ratio.


2021 ◽  
Author(s):  
Nail Tosun ◽  
Ozan Keysan

Muzzle voltage is an essential diagnostic tool used in both contact resistance modeling and transition determination. However, it is challenging to stem the necessary meanings from the collected measurements. In this study, EMFY-3 launch experiments are used to model muzzle voltage characteristics to understand the transition mechanism better. These experiments have muzzle energies in the range between 1.69-2.85 MJ in ASELSAN Electromagnetic Launcher Laboratory. Six different launch tests with various rail current waveforms that ranged between 1.5-2.1 MA are used to investigate different scenarios. Some parameters which affect muzzle voltage are calculated with the 3-D Finite Element Method (FEM), i.e., rail mutual inductance $\mathrm{L_m}$. Muzzle voltages are decomposed into subsections; each subsection is calculated with proper models. Simulation results are coherent with experimental measurements. Findings are compared with previous studies, and differences are explained with possible reasons. Even though we could not conclusively resolve which physical quantity starts to transition, the study showed that transition does not form a specific muzzle velocity, armature action integral, or down-slope rail current ratio.


2021 ◽  
Author(s):  
Nail Tosun ◽  
Ozan Keysan

<div>ASELSAN Inc. has been working on electromagnetic launch technologies since 2014. The first prototype, EMFY-1, has a 25 mm × 25 mm square bore and 3-m-length rails. The second prototype, EMFY-2, has a 50 × 50 mm square bore and 3-m-length. In this paper, a recently developed prototype, EMFY-3, is presented, which has a 50 × 75 mm rectangular bore and 6-m-length. The input energy of the PPS is doubled to 8 MJ, and the 2.91 MJ muzzle energy is obtained up to now. Rail currents, breech, and muzzle voltages are measured to investigate electromagnetic calculations. Velocity curves are captured with Doppler radar, which enables us to establish propulsive inductance gradient L0pr transients empirically. The results confirm that L0 pr is constant throughout the launch, as no significant breaking mechanism occurs with the non-magnetic containment. However, a slight variation (%2 at maximum) happens from one launch to another with different rails’ current magnitudes. The transition phenomenon is a candidate for the drop in the L0 pr, as it occurs more likely at launches with higher linear current densities.</div>


2021 ◽  
Author(s):  
Nail Tosun ◽  
Ozan Keysan

<div>ASELSAN Inc. has been working on electromagnetic launch technologies since 2014. The first prototype, EMFY-1, has a 25 mm × 25 mm square bore and 3-m-length rails. The second prototype, EMFY-2, has a 50 × 50 mm square bore and 3-m-length. In this paper, a recently developed prototype, EMFY-3, is presented, which has a 50 × 75 mm rectangular bore and 6-m-length. The input energy of the PPS is doubled to 8 MJ, and the 2.91 MJ muzzle energy is obtained up to now. Rail currents, breech, and muzzle voltages are measured to investigate electromagnetic calculations. Velocity curves are captured with Doppler radar, which enables us to establish propulsive inductance gradient L0pr transients empirically. The results confirm that L0 pr is constant throughout the launch, as no significant breaking mechanism occurs with the non-magnetic containment. However, a slight variation (%2 at maximum) happens from one launch to another with different rails’ current magnitudes. The transition phenomenon is a candidate for the drop in the L0 pr, as it occurs more likely at launches with higher linear current densities.</div>


2021 ◽  
Author(s):  
Nail Tosun ◽  
Ozan Keysan

<div>Simulations are crucial in the electromagnetic launcher (EML) researches on account of extreme physical conditions. More energy into the system adds weight to the model’s accuracy as the operation risk rises. In this paper, the electromagnetic impact of the bus structure is discovered in a recently developed EMFY-3 electromagnetic launcher, is presented. An H-shaped bus structure is used for current injection. However, experiments showed that the H-shaped bus changes inductance calculations. A careful examination is made to reveal the physical reasoning of the bus impact. We hypothesize that the rail portion surrounded with bus geometry has less inductance than the rest due to the eddy current created by rail current transients, which should be calculated carefully through numerical calculations, i.e., 3-D Finite Element Method (FEM). Two different simulation models were constructed to test the hypothesis. Moreover, rail currents, breech, and muzzle voltages are measured to investigate electromagnetic calculations. Results showed a good agreement with experiments where the bus structure was modeled explicitly. That aspect showed that the bus structure should be well-examined when multiple PPS are connected.</div>


2021 ◽  
Author(s):  
Nail Tosun ◽  
Ozan Keysan

<div>Simulations are crucial in the electromagnetic launcher (EML) researches on account of extreme physical conditions. More energy into the system adds weight to the model’s accuracy as the operation risk rises. In this paper, the electromagnetic impact of the bus structure is discovered in a recently developed EMFY-3 electromagnetic launcher, is presented. An H-shaped bus structure is used for current injection. However, experiments showed that the H-shaped bus changes inductance calculations. A careful examination is made to reveal the physical reasoning of the bus impact. We hypothesize that the rail portion surrounded with bus geometry has less inductance than the rest due to the eddy current created by rail current transients, which should be calculated carefully through numerical calculations, i.e., 3-D Finite Element Method (FEM). Two different simulation models were constructed to test the hypothesis. Moreover, rail currents, breech, and muzzle voltages are measured to investigate electromagnetic calculations. Results showed a good agreement with experiments where the bus structure was modeled explicitly. That aspect showed that the bus structure should be well-examined when multiple PPS are connected.</div>


2021 ◽  
Vol 2002 (1) ◽  
pp. 012020
Author(s):  
Jingang Liu ◽  
Zhiqiang Dong ◽  
Zizhou Su ◽  
Kai Huang ◽  
Ren Ren ◽  
...  

2021 ◽  
Vol 2005 (1) ◽  
pp. 012088
Author(s):  
Xu Zhang ◽  
Huazhuang Shao ◽  
Guoyun Zhang ◽  
Zimeng Zheng

2021 ◽  
Vol 1983 (1) ◽  
pp. 012047
Author(s):  
Ronggang Cao ◽  
Xueyi Hu ◽  
Erwa Dong ◽  
Xiao Ma ◽  
Yu Zhou

Sign in / Sign up

Export Citation Format

Share Document