Experimental study of the effects of continuous rod hold-down anchorages on the cyclic response of wood frame shear walls

2021 ◽  
Vol 230 ◽  
pp. 111641
Author(s):  
Xavier Estrella ◽  
Sardar Malek ◽  
José Luis Almazán ◽  
Pablo Guindos ◽  
Hernán Santa María
2012 ◽  
Vol 517 ◽  
pp. 164-170 ◽  
Author(s):  
Juan Francisco Correal ◽  
Sebastian Varela

Wood frame buildings have shown good performance on past earthquakes mainly because the lateral system of those buildings was able to dissipate energy without significant loss of lateral capacity. Typically, the lateral load resisting system is provided by wood shear walls, which consist of a wood frame sheathed with wood or wood-based composites, such as Plywood or OSB panels. Taking into account the increasing forest demand for wood, there is a global need to find alternative energy-efficient, renewable and eco-friendly construction materials. Giant bamboo like Guadua Angustifolia kunt emerges as an interesting construction material, since it has a fast growing rate (3 to 4 years), high strength to weight ratio and high carbon (CO2) capture capabilities. Results of a past study conducted at the Universidad de los Andes in Bogotá-Colombia reported that Glued Laminated Guadua Bamboo (GLG) has mechanical properties comparable to those of the best structural timbers in Colombia. Potential applications of GLG include not only laminated beams and columns, but also structural panels to be used as a sheathing material for wood frame shear walls. A comprehensive experimental study has been performed on GLG sheathed shear walls in order to find an alternative sheathing material for wood frame buildings as well as to explore their possible application for residential and/or commercial construction in Colombia. A series of tests were conducted on full-size shear wall specimens in order to study the influence of the wall aspect ratio and the edge nail spacing on the shear wall performance. Based on cyclic tests on shear walls, it was found that the stiffness and maximum load carrying capacity of the wall increases as edge nail spacing decreases. In contrast, the displacement ductility capacity decreases, since the rotation of the panels is restricted when the edge nail spacing is reduced. Experimental results also revealed that stiffness, maximum load capacity, and ductility of the GLG sheathed shear walls are not affected by the aspect ratio of the wall. The final stage of the present study included dynamic shake-table tests on full-size one and two-story housing units using GLG sheathed shear walls. Results showed that the units had similar performance characteristics to those of OSB and Plywood sheathed shear walls, and it was concluded that wood-GLG combination could be a viable construction alternative from a structural point of view.


2013 ◽  
Vol 139 (9) ◽  
pp. 1489-1497 ◽  
Author(s):  
S. Pei ◽  
J. W. van de Lindt ◽  
N. Wehbe ◽  
H. Liu

2002 ◽  
Vol 29 (5) ◽  
pp. 713-724 ◽  
Author(s):  
Nicolas Richard ◽  
Laurent Daudeville ◽  
Helmut Prion ◽  
Frank Lam

A numerical model based on the finite element method is presented for prediction of the cyclic response of wood frame structures. The model predicts the cyclic response of shear walls. Nonlinear phenomena are assumed to be concentrated in the connections that are modelled through elements linking the structural elements including the posts, beams, and sheathing panels. Identification of model parameters relies on tests on individual connections. Connection tests on different nail lengths were conducted under monotonic and cyclic lateral loads. Based on the results from past studies that indicate the pull-through failure is an important failure mode in common nail connections with lumber and oriented strand board (OSB), washers were considered as a means to reinforce the connection. The influence of reinforced nailing on the static and dynamic performance of full-size wood frame shear walls with large openings, sheathed with OSB panels, was evaluated experimentally. Combinations of parameters were studied, such as the number of hold-downs, the panel shapes, the nail distribution, and the bracing systems. Comparisons of the dissipated energy per cycle revealed a higher capacity for walls using nails with washer reinforcement than without. Results from numerical simulations of the monotonic and cyclic tests performed on the walls are presented.Key words: timber shear wall, connections, finite element, dissipated energy.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 4655-4669
Author(s):  
Ghavam Kordzangeneh ◽  
Abbas Rezaeian ◽  
Hossein Showkati ◽  
Mohammad Yekrangnia ◽  
Seyed Abdollah Hosseini Dehdashti

2021 ◽  
Vol 240 ◽  
pp. 112298
Author(s):  
Paúl Orellana ◽  
Hernán Santa María ◽  
José Luis Almazán ◽  
Xavier Estrella

2020 ◽  
Vol 146 (5) ◽  
pp. 04020047
Author(s):  
Xin Nie ◽  
Jia-Ji Wang ◽  
Mu-Xuan Tao ◽  
Jian-Sheng Fan ◽  
Y. L. Mo ◽  
...  

2011 ◽  
Vol 255-260 ◽  
pp. 350-354
Author(s):  
Liu Yan ◽  
Xiao Jin Zou ◽  
Chen Gang She

The performance of two types of Chinese screw nails in connections between sheathing and wood frame was assessed using ASTM-F1575-03. Specimens were tested in groups of 10, and both parallel-to-grain and perpendicular-to-grain specimens were tested in the case of ASTM-F1676-03. It was found that the type of nail had little effect on the performance of nail joints. Finally a modified model suitable to domestic nails in two directions was established on the basis of Foschi’s exponential model. The model provides useful data on the performance of sheathing-to-lumber connections.


2016 ◽  
Vol 124 ◽  
pp. 49-63 ◽  
Author(s):  
Wei Yang ◽  
Shan-Suo Zheng ◽  
De-Yi Zhang ◽  
Long-Fei Sun ◽  
Chuan-Lei Gan

Sign in / Sign up

Export Citation Format

Share Document