Free vibration and stability of graphene platelet reinforced porous nano-composite cylindrical panel: Influence of grading, porosity and non-uniform edge loads

2021 ◽  
Vol 230 ◽  
pp. 111670
Author(s):  
Twinkle C.M. ◽  
Jeyaraj Pitchaimani
2020 ◽  
Vol 26 (19-20) ◽  
pp. 1627-1645 ◽  
Author(s):  
Alireza Rahimi ◽  
Akbar Alibeigloo ◽  
Mehran Safarpour

Because of promoted thermomechanical performance of functionally graded graphene platelet–reinforced composite ultralight porous structural components, this article investigates bending and free vibration behavior of functionally graded graphene platelet–reinforced composite porous cylindrical shell based on the theory of elasticity. Effective elasticity modulus of the composite is estimated with the aid of modified version of Halpin–Tsai micromechanics. Rule of mixtures is used to obtain mass density and Poisson’s ratio of the graphene platelet–reinforced composite shell. An analytical solution is introduced to obtain the natural frequencies and static behavior of simply supported cylindrical shell by applying the state-space technique along the radial coordinate and Fourier series expansion along the circumferential and axial direction. In addition, differential quadrature method is used to explore the response of the cylindrical shell in the other cases of boundary conditions. Validity of the applied approach is examined by comparing the numerical results with those published in the available literature. A comprehensive parametric study is conducted on the effects of different combinations of graphene platelets distribution patterns and porosity distribution patterns, boundary conditions, graphene platelets weight fraction, porosity coefficient, and geometry of the shell (such as mid-radius to thickness ratio and length to mid-radius ratio) on the bending and free vibration behavior of the functionally graded graphene platelet–reinforced composite porous cylindrical shell. The results of this study provide useful practical tips for engineers designing composite structures.


2013 ◽  
Vol 477-478 ◽  
pp. 39-42
Author(s):  
Marek Barski ◽  
Aleksander Muc ◽  
Przemysław Pastuszak ◽  
Agnieszka Bondyra

The present work is devoted to the analysis of a buckling behavior of a cylindrical composite panel. The considered structure is subjected to the uniform axial compression. The wall of the panel consists of the 8 layers. In addition, in the geometrical center of the structure there is a square delamination located between the fourth and the fifth layer. The main goal is to determine the buckling and post - buckling behavior as well as the influence of the delamination on the stability of the structure. The nonlinear numerical analysis is carried out with aid of the FEM method. The experimental verification is also performed. The results obtained from numerical and experimental analysis show very similar behavior of the structure.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hamidreza Allahbakhsh ◽  
Ali Dadrasi

A buckling analysis has been carried out to investigate the response of laminated composite cylindrical panel with an elliptical cutout subject to axial loading. The numerical analysis was performed using the Abaqus finite-element software. The effect of the location and size of the cutout and also the composite ply angle on the buckling load of laminated composite cylindrical panel is investigated. Finally, simple equations, in the form of a buckling load reduction factor, were presented by using the least square regression method. The results give useful information into designing a laminated composite cylindrical panel, which can be used to improve the load capacity of cylindrical panels.


Sign in / Sign up

Export Citation Format

Share Document