An investigation on the capability of proper orthogonal modes in determining the natural frequencies and damping ratios of linear structural systems

2021 ◽  
Vol 243 ◽  
pp. 112691
Author(s):  
Amir Zayeri Baghlani Nejad ◽  
Mussa Mahmoudi Sahebi
2007 ◽  
Vol 347 ◽  
pp. 121-126 ◽  
Author(s):  
U. Galvanetto ◽  
L. Monopoli ◽  
Cecilia Surace ◽  
Alessandra Tassotti

The paper presents an experimental application of the Proper Orthogonal Decomposition (POD) to damage detection in steel beams. A damaged beam has been excited with a sinusoidal force, the acceleration response at points regularly spaced along the structure has been recorded and the relevant Proper Orthogonal Modes calculated. In this way it is possible to locate damage by comparing the measured dominant Proper Orthogonal Mode with a smoothed version of it which does not exhibit apparent peaks in correspondence with the damage. One of the principal advantages of the proposed damage detection technique is that it does not require vibration measurements to be performed on the undamaged structure. Moreover the ‘optimality’ of the proper orthogonal modes only requires the use of a few (one-two) of them which can be computed in real time during lab experiments or while the structure is functioning in the field.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Huseyin Aggumus ◽  
Rahmi Guclu

This paper investigated the performance of a semi-active tuned mass damper (STMD) on a multi-degree of freedom (MDOF) building model. A magnetorheological (MR) damper was used as a control element that provided semi-activity in the STMD. The Hardware in the Loop Simulation (HILS) method was applied to mitigate the difficulty and expense of experimental studies, as well as to obtain more realistic results from numerical simulations. In the implementation of this method for the STMD, the MR damper was set up experimentally, other parts of the system were modeled as computer simulations, and studies were carried out by operating these two parts simultaneously. System performance was investigated by excitation with two different acceleration inputs produced from the natural frequencies of the MDOF building. Additionally, a robust H ∞ controller was designed to determine the voltage transmitted to the MR damper. The results showed that the HILS method could be applied successfully to STMDs used in structural systems, and robust H ∞ controls improve system responses with semi-active control applications. Moreover, the control performance of the MR damper develops with an increase in the mass of the STMD.


Author(s):  
B. F. Feeny

Abstract We investigate the interpretation of proper orthogonal modes (POMs) of displacements in both linear and nonlinear vibrations. The POMs in undamped linear symmetric systems can represent linear natural modes if the mass distribution is known. This is appoximately true in a distributed system if it is discretized uniformly. If a single mode dominates, the dominant POM approximates the dominant mode. This is also true if a distributed system is discretized arbitrarily. Generally, the POMs represent the principal axes of inertia of the data in the coordinate space. For synchronous nonlinear normal modes, the dominant POM represents a best fit of the nonlinear modal curve. Linear and nonlinear simulation examples are presented.


Author(s):  
Alok Sinha ◽  
Benjamin Hall ◽  
Brice Cassenti ◽  
Gary Hilbert

This paper deals with the development of a procedure to model geometric variations of blades. Specifically, vibratory parameters of blades are extracted from CMM data on an integrally bladed rotor (IBR). The method is based on proper orthogonal decomposition (POD) of CMM data, solid modeling and finite element techniques. In addition to obtaining natural frequencies and mode shapes of each blade on an IBR, statistics of these modal parameters are also computed and characterized. Numerical results are validated by comparison with experimental results.


Author(s):  
Vinod Vishwakarma ◽  
Alok Sinha ◽  
Yasharth Bhartiya ◽  
Jeffery M. Brown

Modified modal domain analysis (MMDA), a reduced order modeling technique, is applied to a geometrically mistuned integrally bladed rotor to obtain its natural frequencies, mode shapes, and forced response. The geometric mistuning of blades is described in terms of proper orthogonal decomposition (POD) of the coordinate measurement machine (CMM) data. Results from MMDA are compared to those from the full (360 deg) rotor Ansys model. It is found that the MMDA can accurately predict natural frequencies, mode shapes, and forced response. The effects of the number of POD features and the number of tuned modes used as bases for model reduction are examined. Results from frequency mistuning approaches, fundamental mistuning model (FMM) and subset of nominal modes (SNM), are also generated and compared to those from full (360 deg) rotor Ansys model. It is clearly seen that FMM and SNM are unable to yield accurate results whereas MMDA yields highly accurate results.


Sign in / Sign up

Export Citation Format

Share Document