Numerical study on the rotation capacity of SIP-strengthened cold-formed steel beams

2022 ◽  
Vol 251 ◽  
pp. 113542
Author(s):  
Hussein Shawki Osman ◽  
Mohammed H. Serror ◽  
Elsayed Fathallah
2017 ◽  
Vol 23 (4) ◽  
pp. 385-397
Author(s):  
Mohammed H. Serror ◽  
Essam G. Soliman ◽  
Ahmed F. Hassan

2016 ◽  
Vol 121 ◽  
pp. 216-228 ◽  
Author(s):  
Mohammed H. Serror ◽  
Emad M. Hassan ◽  
Sherif A. Mourad

2016 ◽  
Vol 7 (4) ◽  
pp. 388-402 ◽  
Author(s):  
Luis Laím ◽  
João Paulo C. Rodrigues

Purpose This paper is mainly aimed at the structural performance of compound cold-formed galvanised steel beams under fire conditions based on the results of a large programme of experimental tests and numerical simulations. The main objective of this research was to assess the critical temperature and time of the studied beams. Other important goals of this research work were to investigate the influence of the cross-sections (C, lipped-I, R and 2R beams) and, above all, of the axial restraint (0, 0.45, 3, 7.5, 15, 30, ∞ kN/mm) to the thermal elongation of the beam and the rotational restraint at beam supports (0, 15, 80, 150, 300, 1,200 and ∞ kN.m/rad) on the fire resistance of this kind of beams. Design/methodology/approach This paper still provides details of the simulation methodology for achieving numerical stability and faithful representation of detailed structural behaviour and compares the simulation and experimental results, including beam failure modes, measured beam axial forces and beam mid-span deflections. Findings Good agreement between Abaqus simulations and experimental observations confirms that the finite element models developed with the Abaqus/standard solver are suitable for predicting the structural fire behaviour of restrained cold-formed steel beams. Originality/value The results showed above all that the effect of the stiffness of the surrounding structure seems to decrease with the increasing slenderness of the beams.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3627
Author(s):  
Sherif A. Elsawaf ◽  
Saleh O. Bamaga

In this paper, the findings of numerical modeling of the composite action between normal concrete and Cold-Formed Steel (CFS) beams are presented. To obtain comprehensive structural behavior, the numerical model was designed using 3-D brick components. The simulation results were correlated to the experimental results of eight push tests, using three types of innovative shear connectors in addition to standard headed stud shear connectors, with two different thicknesses of a CFS channel beam. The proposed numerical model was found to be capable of simulating the failure mode of the push test as well as the behavior of shear connectors in order to provide composite action between the cold-formed steel beam and concrete using the concrete damaged plasticity model.


2018 ◽  
Vol 22 (1) ◽  
pp. 172-186 ◽  
Author(s):  
M Adil Dar ◽  
N Subramanian ◽  
A R Dar ◽  
M Anbarasu ◽  
James BP Lim ◽  
...  

To address the various instability problems in cold-formed steel members, many researchers have mainly focused on developing innovative sectional profiles wherein geometry of the section plays a vital role in enhancing the inherent resistance of such sections against premature buckling. However, the process of forming such innovative shapes is not only complex and time-consuming but sometimes such sections fail to mobilize their complete reserve strength. Hence, a stiffening arrangement of weaker zones for mobilizing the untapped reserve strength is suggested. The contribution of this simple, effective and partly stiffening arrangements, aimed at eliminating/delaying the premature local buckling, is studied both experimentally and numerically and also compared with existing codes. Experimental study was carried out on different simply supported cold-formed steel beams with judiciously proposed stiffening arrangements under four-point loading. An equivalent hot-rolled steel beam was also tested to compare the efficiency of the cold-formed steel beams. The cold-formed steel beams investigated had different width-to-thickness ratio, different geometries and different stiffening arrangements. The test strengths, failure modes, deformed shapes, load versus mid-span displacements and geometric imperfections were measured and reported. The test strengths of the beam models are also compared with the design strength predicted by North American Standards and Eurocode for cold-formed steel structures. To validate the test results further, a numerical study was carried out on such stiffened cold-formed steel beams using finite element software ABAQUS. All these results show that the proposed strengthening system is efficient and economical and allow cold-formed steel beams to reach greater load carrying capacity.


2017 ◽  
Vol 128 ◽  
pp. 84-98 ◽  
Author(s):  
Emad M. Hassan ◽  
Mohammed H. Serror ◽  
Sherif A. Mourad

2014 ◽  
Vol 74 ◽  
pp. 104-117 ◽  
Author(s):  
Luís Laím ◽  
João Paulo C. Rodrigues ◽  
Luis Simões da Silva

2021 ◽  
Vol 164 ◽  
pp. 107831
Author(s):  
Mahmoud Hosseinpour ◽  
Mehran Zeynalian ◽  
Abdoreza Ataei ◽  
Maryam Daei

Sign in / Sign up

Export Citation Format

Share Document