One-sided shear retrofit of reinforced concrete beams in existing high-rise buildings

2022 ◽  
Vol 252 ◽  
pp. 113634
Author(s):  
Ping-Ting Chung ◽  
Chung-Che Chou
Author(s):  
Mohammad Sadegh Barkhordari ◽  
De-Cheng Feng ◽  
Mohsen Tehranizadeh

Earthquakes occurred in recent years have highlighted the need to examine the strength of reinforced concrete (RC) members. RC beams are one of the elements of reinforced concrete structures. Due to the dramatic increase in the population and the number of medium/high-rise buildings, in recent years, the beams of buildings have been mainly designed and executed in the type of deep beams. In this study, the artificial neural network (ANN) with optimization algorithms, including particle swarm optimization (PSO), Archimedes optimization algorithm (AOA), and sparrow search algorithm (SSA), are used to determine the shear strength of reinforced concrete deep (RCD) beams. 271 samples from experimental tests are employed to develop algorithms. The results of this study, design codes equations, and previous research are compared. Comparison between the results shows that the PSO-ANN algorithm is more accurate than previous methods. Finally, SHApley Additive exPlanations (SHAP) method is utilized to explain the predictions. SHAP reveals that the beam span and the ratio of the beam span to beam depth have the highest impact in predicting shear strength.


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


Sign in / Sign up

Export Citation Format

Share Document