Experimental response of a scaled dry-joint masonry arch subject to inclined support displacements

2022 ◽  
Vol 253 ◽  
pp. 113804
Author(s):  
Chiara Ferrero ◽  
Chiara Calderini ◽  
Pere Roca
2013 ◽  
Vol 7 (1) ◽  
pp. 127-135 ◽  
Author(s):  
E. Grande ◽  
M. Imbimbo ◽  
A. Rasulo

The paper discusses the results of an experimental investigation carried out on reinforced concrete (RC) beams strengthened in shear by externally bonded fiber reinforced plastic (FRP) sheets. The study is devoted to analyze the role that the transverse steel reinforcement and the beam slenderness ratio could play on the resistant mechanism of RC beams strengthened in shear by FRP composites. The results are summarized and analyzed in detail in the paper in terms of shear capacity, cracking pattern and shear resisting contribution of FRP.


Author(s):  
Giuseppe Cocchetti ◽  
Egidio Rizzi

AbstractThis analytical note shall provide a contribution to the understanding of general principles in the Mechanics of (symmetric circular) masonry arches. Within a mainstream of previous research work by the authors (and competent framing in the dedicated literature), devoted to investigate the classical structural optimization problem leading to the least-thickness condition under self-weight (“Couplet-Heyman problem”), and the relevant characteristics of the purely rotational five-hinge collapse mode, new and complementary information is here analytically derived. Peculiar extremal conditions are explicitly inspected, as those leading to the maximum intrinsic non-dimensional horizontal thrust and to the foremost wide angular inner-hinge position from the crown, both occurring for specific instances of over-complete (horseshoe) arches. The whole is obtained, and confronted, for three typical solution cases, i.e., Heyman, “CCR” and Milankovitch instances, all together, by full closed-form explicit representations, and elucidated by relevant illustrations.


Author(s):  
Yasser E. Ibrahim ◽  
Asif Hameed ◽  
Asad Ullah Qazi ◽  
Ali Murtaza Rasool ◽  
Muhammad Farhan Latif ◽  
...  

2001 ◽  
Vol 15 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Paul J Fanning ◽  
Thomas E Boothby ◽  
Benjamin J Roberts
Keyword(s):  

Author(s):  
A. Vania ◽  
P. Pennacchi ◽  
S. Chatterton

Model-based methods can be applied to identify the most likely faults that cause the experimental response of a rotating machine. Sometimes, the objective function, to be minimized in the fault identification method, shows multiple sufficiently low values that are associated with different sets of the equivalent excitations by means of which the fault can be modeled. In these cases, the knowledge of the contribution of each normal mode of interest to the vibration predicted at each measurement point can provide useful information to identify the actual fault. In this paper, the capabilities of an original diagnostic strategy that combines the use of common fault identification methods with innovative techniques based on a modal representation of the dynamic behavior of rotating machines is shown. This investigation approach has been successfully validated by means of the analysis of the abnormal vibrations of a large power unit.


2014 ◽  
Vol 488-489 ◽  
pp. 605-608
Author(s):  
Xiang Zan Xie

Reinforced concrete masonry arch aqueduct is a common water diversion engineering structure. Aqueduct is decorated on the concrete cushion layer, cushion layer effects on masonry arch, the structures stress is uniform, carrying capacity is strong. This paper adopts finite element method to carry out force analysis for reinforced concrete masonry arch aqueduct of Lijia pumping station, considering aqueduct weight, water pressure and earthquake effect, etc. Researching stress and deformation distribution law of reinforced concrete masonry arch aqueduct.


Author(s):  
Saad F. Alazemi ◽  
Amin Bibo ◽  
Mohammed F. Daqaq

This paper presents an experimental study which examines the design parameters affecting the performance characteristics of a Tuned Magnetic Fluid Damper (TMFD) device designed to concurrently mitigate structural vibrations and harvest vibratory energy. The device which is mounted on a vibrating structure, consists of a rectangular container carrying a magnetized ferrofluid and a pick-up coil wound around the container to enable energy harvesting. Experiments are performed to investigate the three-way interaction between the vibrations of the structure, the sloshing of the fluid, and the harvesting circuit dynamics. In particular, the tuning and optimization is examined for several design parameters including magnetic field spatial distribution and intensity, winding direction, winding location, winding density, and ferrofluid height inside the tank. The experimental response of the device is compared against the conventional TMFD at different excitation levels and frequencies. Results demonstrating the influence of the significant parameters on the relative performance are presented and discussed in terms of vibration suppression and power generation capabilities.


Sign in / Sign up

Export Citation Format

Share Document