Putting renewable energy auctions into action – An agent-based model of onshore wind power auctions in Germany

Energy Policy ◽  
2017 ◽  
Vol 110 ◽  
pp. 394-402 ◽  
Author(s):  
Vasilios Anatolitis ◽  
Marijke Welisch
Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4314 ◽  
Author(s):  
Maqbool ◽  
Baetens ◽  
Lotfi ◽  
Vandevelde ◽  
Eetvelde

This article provides an agent-based model of a hypothetical standalone electricity network to identify how the feed-in tariffs and the installed capacity of wind power, calculated in percentage of total system demand, affect the electricity consumption from renewables. It includes the mechanism of electricity pricing on the Day Ahead Market (DAM) and the Imbalance Market (IM). The extra production volumes of Electricity from Renewable Energy Sources (RES-E) and the flexibility of electrical consumption of industries is provided as reserves on the IM. Five thousand simulations were run by using the agent-based model to gather data that were then fit in linear regression models. This helped to quantify the effect of feed-in tariffs and installed capacity of wind power on the consumption from renewable energy and market prices. The consumption from renewable sources, expressed as percentage of total system consumption, increased by 8.17% for every 10% increase in installed capacity of wind power. The sharpest increase in renewable energy consumption is observed when a feed-in tariff of 0.04 €/kWh is provided to the wind farm owners, resulting in an average increase of 9.1% and 5.1% in the consumption from renewable sources while the maximum installed capacity of wind power is 35% and 100%, respectively. The regression model for the annualized DAM prices showed an increase by 0.01 €cents/kWh in the DAM prices for every 10% increase in the installed wind power capacity. With every increase of 0.01 €/kWh in the value of feed-in tariffs, the mean DAM price is lowered as compared to the previous value of the feed-in tariff. DAM prices only decrease with increasing installed wind capacity when a feed-in tariff of 0.04 €/kWh is provided. This is observed because all wind power being traded on DAM at a very cheap price. Hence, no volume of electricity is being stored for availability on IM. The regression models for predicting IM prices show that, with every 10% increase in installed capacity of wind power, the annualized IM price decreases by 0.031 and 0.34 €cents/kWh, when installed capacity of wind power is between 0 and 25%, and between 25 and 100%, respectively. The models also showed that, until the maximum installed capacity of wind power is less than 25%, the IM prices increase when the value of feed-in tariff is 0.01 and 0.04 €/kWh, but decrease for a feed-in tariff of 0.02 and 0.03 €/kWh. When installed capacity of wind power is between 25 and 100%, increasing feed-in tariffs to the value of 0.03 €/kWh result in lowering the mean IM price. However, at 0.04 €/kWh, the mean IM price is higher, showing the effect of no storage reserves being available on IM and more expensive reserves being engaged on the IM. The study concludes that the effect of increasing installed capacity of wind power is more significant on increasing consumption of renewable energy and decreasing the DAM and IM prices than the effect of feed-in tariffs. However, the effect of increasing values of both factors on the profit of RES-E producers with storage facilities is not positive, pointing to the need for customized rules and incentives to encourage their market participation and investment in storage facilities.


2020 ◽  
Author(s):  
Jong-Yoon Park ◽  
Young-Joon Lee

<p>Wind energy represents the leading source of renewable energy in many developed countries. South Korea has recently introduced large-scale programs to promote the transition from fossil fuels and nuclear power to renewable energy as a source of power. The Korean government has set an energy policy goal to increase the ratio of renewable energy to 20% by 2030. To this end, it is necessary to supply renewable energy facilities with a total capacity of 48.7GW including 30.8GW of photovoltaic power generation and 16.5GW of wind power generation by the target year. Accordingly, we should plan now for the regulation of the location to meet this developing need. However, in South Korea, forests cover 63% of the country's land area so that there is a limit to find a location for the installation of large-scale power generation facilities without occupying forest lands. For example, it is mainly located in forests or farmlands where land costs are relatively low, resulting in a decrease in forest resources and negative impacts on ecosystems and landscapes. Renewable energyexpansion planning should ensure that environmental criteria, of the type outlined in this study, are given appropriate considerations in onshore wind power project site selection. Many of the more problematic wind power sites are best left mountainous forest under the natural conditions, because the environmental or related social impacts are likely to be unacceptably high. Obviously, no plans are likely to be more environmentally desirable in those cases. The alternatives for onshore wind power siting considered the environmental criteria to achieve the goal of wind energy will be suggested.</p>


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3217 ◽  
Author(s):  
Yongchao Zeng ◽  
Peiwu Dong ◽  
Yingying Shi ◽  
Yang Li

Renewable energy technologies (RETs) are crucial for solving the world’s energy dilemma. However, the diffusion rate of RETs is still dissatisfactory. One critical reason is that conventional energy technologies (CETs) are dominating energy markets. Emergent technologies that have inferior initial performance but eventually become new dominators of markets are frequently observed in various industries, which can be explained with the disruptive innovation theory (DIT). DIT suggests that instead of competing with incumbent technologies in the dominated dimension, redefining the competition on a two-dimensional basis is wise. Aiming at applying DIT to RET diffusion, this research builds an agent-based model (ABM) considering the order of entering the market, price, preference changing and RET improvement rate to simulate the competition dynamics between RETs and CETs. The findings include that the order of entering the market is crucial for a technology’s success; disruptive innovation is an effective approach to cope with the disadvantage of RETs as latecomers; generally, lower price, higher consistency with consumers’ preferences and higher improvement rate in the conventional dimension are beneficial to RET diffusion; counter-intuitively, increasing RET’s improvement rate in the conventional dimension is beneficial to RET diffusion when the network is sparse; while it is harmful when the network is densified.


2001 ◽  
Author(s):  
Minoru Tabata ◽  
Akira Ide ◽  
Nobuoki Eshima ◽  
Kyushu Takagi ◽  
Yasuhiro Takei ◽  
...  

2020 ◽  
Vol 26 (6) ◽  
pp. 1392-1413
Author(s):  
S.V. Ratner

Subject. This article discusses the effectiveness of government programmes to support renewable energy and whether they should continue to be implemented. Objectives. The article aims to conduct a comprehensive analysis of the changes in solar and wind power projects under the State support programme within the period from 2014 to 2019 and assess the effectiveness of the acting incentive mechanisms. Methods. For the study, I used the Learning-by-Doing theory and Project Management principles and methods. Results. The article proposes to consider the local content of the projects implemented as the key effectiveness indicator of the renewable energy support programme in Russia. For solar projects, this figure is currently significantly higher than the planned one, and it corresponds to the planned one for wind projects. In general, therefore, the programme can be considered effective. Conclusions. Further improvements in renewable energy support mechanisms should take into account the need to drastically increase the pace of training in the full cycle of the renewable energy project, including the operation phase of generating equipment and the supply of electricity to the grid.


Sign in / Sign up

Export Citation Format

Share Document