Cost minimization for fully renewable electricity systems: A Mauritius case study

Energy Policy ◽  
2019 ◽  
Vol 133 ◽  
pp. 110895 ◽  
Author(s):  
D. Timmons ◽  
A.Z. Dhunny ◽  
K. Elahee ◽  
B. Havumaki ◽  
M. Howells ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3028 ◽  
Author(s):  
Petr Procházka ◽  
Luboš Smutka ◽  
Vladimír Hönig

Recent movements for the decarbonization of the electricity sector have become a priority for many countries around the world and will inevitably lead to the sharp decline of fossil-fuel-based energy. Energy from fossil fuels is to be replaced by renewable energy sources (RES), although the transition will neither be cheap nor smooth. One sustainable and environmentally friendly alternative to fossil fuels and which will take a considerable share in the increasing supply of renewable energy resources is biofuels. There are various types of biofuels used in practice; however, biodiesels represent one of the most popular and widespread ones. This paper focuses as a case study on the byproducts of Jatropha curcas, a crop and a plant that is already used for biofuel production and which is subsequently employed in electricity generation in Jatropha curcas producing regions. This paper identifies the limitations and prospects of Jatropha curcas utilization. Also, Jatropha curcas is compared to other materials suitable for biomass generation. An economic analysis for a 2 MW biofuel powerplant was conducted incorporating various market-related risks. The study shows that at current prices, net profitability can be achieved using Jatropha curcas byproducts for producing electricity.


2019 ◽  
Vol 11 (17) ◽  
pp. 4679
Author(s):  
Carina Anderson ◽  
Robert Passey ◽  
Jeremy De Valck ◽  
Rakibuzzaman Shah

This paper reports on a case study of the community group Zero Emissions Noosa, whose goal is for 100% renewable electricity in the Noosa Shire (Queensland, Australia) by 2026. Described within this paper are the processes used by Zero Emissions Noosa to set up their zero emissions plan, involving community engagement and the use of an external consultant. The external consultant was employed to produce a detailed report outlining how to successfully achieve zero emissions from electricity in the Noosa Shire by 2026. This paper explains how and why the community engagement process used to produce the report was just as important as the outcomes of the report itself. Modeling was undertaken, and both detailed and contextual information was provided. Inclusion of the community in developing the scenario parameters for the modeling had a number of benefits including establishing the context within which their actions would occur and focusing their efforts on options that were technically feasible, financially viable and within their capabilities to implement. This provided a focal point for the community in calling meetings and contacting stakeholders. Rather than prescribing a particular course of action, it also resulted in a toolbox of options, a range of possible solutions that is flexible enough to fit into whatever actions are preferred by the community. The approach and outcomes discussed in this paper should, therefore, be useful to other communities with similar carbon emission reduction goals.


2022 ◽  
Vol 14 (2) ◽  
pp. 852
Author(s):  
Florin Teodor Boldeanu ◽  
José Antonio Clemente-Almendros ◽  
Ileana Tache ◽  
Luis Alberto Seguí-Amortegui

The electricity sector was negatively impacted by the coronavirus disease (COVID-19), with considerable declines in consumption in the initial phase. Investors were in turmoil, and stock prices for these companies plummeted. The aim of this paper is to demonstrate the significant negative influence of the pandemic on abnormal returns for the electricity sector, specifically for traditional and renewable companies and the influence of ESG scores, using the event study approach and multi-variate regressions. Our results show that the pandemic indeed had a negative impact on the electricity sector, with renewable electricity companies suffering a sharper decline than traditional ones. Moreover, we find that ESG pillar scores affected electricity companies differently and are sector-specific. For renewable electricity companies, the returns were positively influenced by the environmental ESG scores and negatively by governance ESG scores.


2022 ◽  
Vol 155 ◽  
pp. 111932
Author(s):  
Francisco Gutierrez-Garcia ◽  
Angel Arcos-Vargas ◽  
Antonio Gomez-Exposito

2020 ◽  
Vol 8 ◽  
Author(s):  
Constantinos Taliotis ◽  
Nestor Fylaktos ◽  
George Partasides ◽  
Francesco Gardumi ◽  
Vignesh Sridharan ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6047 ◽  
Author(s):  
Ali Ekhtiari ◽  
Damian Flynn ◽  
Eoin Syron

Renewable electricity can be converted into hydrogen via electrolysis also known as power-to-H2 (P2H), which, when injected in the gas network pipelines provides a potential solution for the storage and transport of this green energy. Because of the variable renewable electricity production, the electricity end-user’s demand for “power when required”, distribution, and transmission power grid constrains the availability of renewable energy for P2H can be difficult to predict. The evaluation of any potential P2H investment while taking into account this consideration, should also examine the effects of incorporating the produced green hydrogen in the gas network. Parameters, including pipeline pressure drop, flowrate, velocity, and, most importantly, composition and calorific content, are crucial for gas network management. A simplified representation of the Irish gas transmission network is created and used as a case study to investigate the impact on gas network operation, of hydrogen generated from curtailed wind power. The variability in wind speed and gas network demands that occur over a 24 h period and with network location are all incorporated into a case study to determine how the inclusion of green hydrogen will affect gas network parameters. This work demonstrates that when using only curtailed renewable electricity during a period with excess renewable power generation, despite using multiple injection points, significant variation in gas quality can occur in the gas network. Hydrogen concentrations of up to 15.8% occur, which exceed the recommended permitted limits for the blending of hydrogen in a natural gas network. These results highlight the importance of modelling both the gas and electricity systems when investigating any potential P2H installation. It is concluded that, for gas networks that decarbonise through the inclusion of blended hydrogen, active management of gas quality is required for all but the smallest of installations.


Sign in / Sign up

Export Citation Format

Share Document