The Impact of Transmission Development on a 100% Renewable Electricity Supply—A Spatial Case Study on the German Power System

Author(s):  
Jens Weibezahn ◽  
Mario Kendziorski ◽  
Hendrik Kramer ◽  
Christian von Hirschhausen
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6047 ◽  
Author(s):  
Ali Ekhtiari ◽  
Damian Flynn ◽  
Eoin Syron

Renewable electricity can be converted into hydrogen via electrolysis also known as power-to-H2 (P2H), which, when injected in the gas network pipelines provides a potential solution for the storage and transport of this green energy. Because of the variable renewable electricity production, the electricity end-user’s demand for “power when required”, distribution, and transmission power grid constrains the availability of renewable energy for P2H can be difficult to predict. The evaluation of any potential P2H investment while taking into account this consideration, should also examine the effects of incorporating the produced green hydrogen in the gas network. Parameters, including pipeline pressure drop, flowrate, velocity, and, most importantly, composition and calorific content, are crucial for gas network management. A simplified representation of the Irish gas transmission network is created and used as a case study to investigate the impact on gas network operation, of hydrogen generated from curtailed wind power. The variability in wind speed and gas network demands that occur over a 24 h period and with network location are all incorporated into a case study to determine how the inclusion of green hydrogen will affect gas network parameters. This work demonstrates that when using only curtailed renewable electricity during a period with excess renewable power generation, despite using multiple injection points, significant variation in gas quality can occur in the gas network. Hydrogen concentrations of up to 15.8% occur, which exceed the recommended permitted limits for the blending of hydrogen in a natural gas network. These results highlight the importance of modelling both the gas and electricity systems when investigating any potential P2H installation. It is concluded that, for gas networks that decarbonise through the inclusion of blended hydrogen, active management of gas quality is required for all but the smallest of installations.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2191 ◽  
Author(s):  
Changgi Min

This study proposes a method to evaluate the impact of transmission congestion on the flexibility of a power system, based on the ramping capability shortage expectation (RSE). Here, flexibility refers to the ability to retain a power balance in response to changes in the net load. The flexibility issue arises due to the extensive integration of renewable energy resources; specifically, the higher the degree of integration, and the greater the variability and uncertainty in the power system. Flexibility is further limited by the net transfer capacity (NTC) of transmission lines. Here, we propose a method capable of capturing the extent to which transmission congestion affects the power system, to identify transmission reinforcement options for improved flexibility. In Korea, transmission congestion occurs frequently in regions to the north and southeast. A case study for a Korean power system in 2030 was conducted. Simulation results showed that the impact of transmission reinforcement in flexibility tends to be proportional to the NTC and is greater when the penetration level is low.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1730
Author(s):  
Ruben Hidalgo-Leon ◽  
Fernando Amoroso ◽  
Jaqueline Litardo ◽  
Javier Urquizo ◽  
Miguel Torres ◽  
...  

This paper presents a technical, economic, and environmental analysis and optimization of the impact of the reduction of diesel fuel subsidy in the design of an off-grid hybrid power system (OHPS). The OHPS includes a diesel generator, battery energy storage system (BESS), and a solar power system (SPS). This impact will focus on the electricity production levels of each of the OHPS components according to the increase of the fuel price and the SPS size. The Bellavista community in Ecuador was selected as the case study for this work. In this South American country, the government has begun a gradual increase in the diesel fuel price until it reaches international prices. Fifteen scenarios of OHPSs were simulated, in Homer Pro software, considering three SPS sizes and varying the diesel fuel price in five values. The annual load profile for the simulations was built based on the information of a previous study in this community. The results showed that for lower fuel prices (USD$0.26/L and USD$0.35/L), the OHPSs worked mostly with their diesel generators with reduced use of their BESSs. However, there was a higher penetration of the power delivered from the SPSs and BESSs, with higher fuel prices (USD$0.44/L, USD$0.53/L, and USD$0.62/L). These OHPSs considerably reduced their CO2 emissions compared with the standalone diesel generator scenario.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4409 ◽  
Author(s):  
Heba M. Abdullah ◽  
Rashad M. Kamel ◽  
Anas Tahir ◽  
Azzam Sleit ◽  
Adel Gastli

Recently, electric vehicles (EVs) have become an increasingly important topic in the field of sustainable transportation research, alongside distributed generation, reactive power compensation, charging optimization, and control. The process of loading on existing power system infrastructures with increasing demand requires appropriate impact indices to be analyzed. This paper studies the impact of integrating electric vehicle charging stations (EVCSs) into a residential distribution network. An actual case study is modeled to acquire nodal voltages and feeder currents. The model obtains the optimal integration of solar photovoltaic (PV) panels with charging stations while considering reactive power compensation. The impact of EV integration for the case study results in two peaks, which show a 6.4% and 17% increase. Varying the inverter to the PV ratio from 1.1 to 2 decreases system losses by 34% to 41%. The type of charging is dependent on the maximum penetration of EVCSs that the network can install without system upgrades. Increasing the number of EVCSs can cause an increase in power system losses, which is dependent on the network architecture. Installing PV reduces the load peak by 21%, and the installation of PV with consideration of reactive power control increases system efficiency and power delivery.


Author(s):  
Taiwo Fasina ◽  
Bankole Adebanji ◽  
Adewale Abe ◽  
Isiaka Ismail

Distributed generations (DG) are being installed at increasing rates, both in developed and developing countries. The increasing number of DG connected to the distribution system could have a significant impact on the power system operation. This paper presents a case study investigating the impact of grid-connected DG on the Nigerian power network in terms of bus voltages and network losses. The results showed that without DG, some of the bus voltage magnitudes of the test system were outside the permissible voltage limit of 0.95pu≤Vi≤1.05p.u. However, with DG connected, the voltage magnitudes were improved to allowable values. The network active power loss was reduced by 12.03% from 85.60MW to 75.30MW. In this way, the power system becomes more efficient and secured.


Sign in / Sign up

Export Citation Format

Share Document