Considering effective adaptation options to impacts of climate change for maize production in Ghana

2013 ◽  
Vol 5 ◽  
pp. 131-145 ◽  
Author(s):  
E. Tachie-Obeng ◽  
P.B.I. Akponikpè ◽  
S. Adiku
2018 ◽  
Vol 29 (8) ◽  
pp. 2378-2389 ◽  
Author(s):  
Ahmad Hamidov ◽  
Katharina Helming ◽  
Gianni Bellocchi ◽  
Waldemar Bojar ◽  
Tommy Dalgaard ◽  
...  

Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicholas A. Cradock-Henry ◽  
Paula Blackett ◽  
Justin Connolly ◽  
Bob Frame ◽  
Edmar Teixeira ◽  
...  

Adaptation pathways is an approach to identify, assess, and sequence climate change adaptation options over time, linking decisions to critical signals and triggers derived from scenarios of future conditions. However, conceptual differences in their development can hinder methodological advance and create a disconnect between those applying pathways approaches and the wider community of practitioners undertaking vulnerability, impacts, and adaptation assessments. Here, we contribute to close these gaps, advancing principles, and processes that may be used to guide the trajectory for adaptation pathways, without having to rely on data-rich or resource-intensive methods. To achieve this, concepts and practices from the broad pathways literature is combined with our own experience in developing adaptation pathways for primary industries facing the combined impacts of climate change and other, nonclimatic stressors. Each stage is guided by a goal and tools to facilitate discussions and produce feasible pathways. We illustrate the process with a case study from Hawke’s Bay, New Zealand, involving multiple data sources and methods in two catchments. Resulting guidelines and empirical examples are consistent with principles of adaptive management and planning and can provide a template for developing local-, regional- or issue-specific pathways elsewhere and enrich the diversity of vulnerability, impacts, and adaptation assessment practice.


Author(s):  
Georgia de Jong Cleyndert ◽  
Rebecca Newman ◽  
Cecile Brugere ◽  
Aida Cuni-Sanchez ◽  
Robert Marchant

AbstractSeaweed farming is an important alternative livelihood activity that has been heralded as a development success story. It has advanced women’s empowerment and economic liberation in coastal communities in Zanzibar, despite recent declines in its production. Using data from 36 semistructured interviews, we explore the impacts of climate change on seaweed farming in Zanzibar and the coping and adaptation strategies available to farmers. Interviews reveal that climatic changes observed in Zanzibar are characterized by increased temperatures, increased winds, and irregular rainfall, and these changes have negatively affected coastal seaweed farming yields and quality. Combined with economic challenges, these environmental stressors are threatening the sustainability of seaweed farming and the wider development impacts that have been gained over the past decades. Establishing seaweed farms in deeper water, using new technologies, could be an adaptation method to overcome rising temperatures; however, there are significant socioeconomic barriers for this to happen. For example, women lack access to boats and the ability to swim. Adaptation options to the increasing impacts of climate change will be possible only with institutional support, significant investment, and through the empowerment of women and the participation local communities.


Author(s):  
Kindie Tesfaye ◽  
Sika Gbegbelegbe ◽  
Jill E Cairns ◽  
Bekele Shiferaw ◽  
Boddupalli M Prasanna ◽  
...  

Purpose – The purpose of this study is to examine the biophysical and socioeconomic impacts of climate change on maize production and food security in sub-Saharan Africa (SSA) using adapted improved maize varieties and well-calibrated and validated bioeconomic models. Design/methodology/approach – Using the past climate (1950-2000) as a baseline, the study estimated the biophysical impacts of climate change in 2050 (2040-2069) and 2080 (2070-2099) under the A1B emission scenario and three nitrogen levels, and the socioeconomic impacts in 2050. Findings – Climate change will affect maize yields across SSA in 2050 and 2080, and the extent of the impact at a given period will vary considerably between input levels, regions and maize mega environments (MMEs). Greater relative yield reductions may occur under medium and high-input intensification than under low intensification, in Western and Southern Africa than in Eastern and Central Africa and in lowland and dry mid-altitude than in highland and wet mid-altitude MMEs. Climate change may worsen food insecurity in SSA in 2050 through its negative impact on maize consumption and reduction in daily calorie intake. However, international trade has the potential to offset some of the negative impacts. Originality/value – The study calibrated and applied bioeconomic models to estimate the biophysical and socioeconomic impact of climate change on maize production at fine resolution. The results could be used as a baseline to evaluate measures that will be applied to adapt maize to the future climate in SSA.


Sign in / Sign up

Export Citation Format

Share Document