Accumulation and histological location of heavy metals in Phragmites australis grown in acid mine drainage contaminated soil with or without citric acid

2014 ◽  
Vol 105 ◽  
pp. 46-54 ◽  
Author(s):  
Lin Guo ◽  
Donald W. Ott ◽  
Teresa J. Cutright
Author(s):  
Fenwu Liu ◽  
Xingxing Qiao ◽  
Lixiang Zhou ◽  
Jian Zhang

As a major province of mineral resources in China, Shanxi currently has 6000 mines of various types, and acid mine drainage (AMD) is a major pollutant from the mining industry. Calcareous soil is dominant in western North China (including the Shanxi Province), therefore, clarifying the migration behavior of the main AMD pollutants (H+, S, Fe, heavy metals) in calcareous soil is essential for remediating AMD-contaminated soil in North China. In this study, the migration behavior of the main pollutants from AMD in calcareous soil was investigated using soil columns containing 20 cm of surficial soil to which different volumes of simulated AMD were added in 20 applications. Filtrate that was discharged from the soil columns and the soil samples from the columns were analyzed. Almost all of the Fe ions (>99%) from the AMD were intercepted in the 0–20 cm depth of the soil. Although >80% of SO42− was retained, the retention efficiency of the soil for SO42− was lower than it was for Fe. Cu, as a representative of heavy metals that are contained in AMD, was nearly totally retained by the calcareous soil. However, Cu had a tendency to migrate downward with the gradual acidification of the upper soil. In addition, CaCO3 was transformed into CaSO4 in AMD-contaminated soil. The outcomes of this study are valuable for understanding the pollution of calcareous soil by AMD and can provide key parameters for remediating AMD-contaminated soil.


2012 ◽  
Vol 610-613 ◽  
pp. 3252-3256
Author(s):  
Mei Qin Chen ◽  
Feng Ji Wu

Acid mine drainage (AMD) has properties of extreme acidification, quantities of sulfate and elevated levels of soluble heavy metals. It was a widespread environmental problem that caused adverse effects to the qualities of ground water and surface water. In the past decades, most of investigations were focused on the heavy metals as their toxicities for human and animals. As another main constitution of AMD, sulfate ion is nontoxic, yet high concentration of sulfate ion can cause many problems such as soil acidification, metal corrosion and health problems. More attention should be paid on the sulfate ion when people focus on the AMD. In the paper, sulfate removal mechanisms include adsorption, precipitation, co-precipitation and biological reduction were analyzed and summarized. Meanwhile, the remediation technologies, especially the applications of them in China were also presented and discussed.


2019 ◽  
Vol 538 ◽  
pp. 132-141 ◽  
Author(s):  
Guorui Feng ◽  
Jianchao Ma ◽  
Xiaopeng Zhang ◽  
Qingfang Zhang ◽  
Yuqiang Xiao ◽  
...  

2002 ◽  
Vol 36 (19) ◽  
pp. 4757-4764 ◽  
Author(s):  
Matthew M Matlock ◽  
Brock S Howerton ◽  
David A Atwood

Sign in / Sign up

Export Citation Format

Share Document