Zymoseptoria tritici development induces local senescence in wheat leaves, without affecting their monocarpic senescence under two contrasted nitrogen nutrition

2016 ◽  
Vol 132 ◽  
pp. 154-162 ◽  
Author(s):  
Marie-Odile Bancal ◽  
Rym Ben Slimane ◽  
Pierre Bancal
2010 ◽  
Vol 36 (8) ◽  
pp. 1362-1370 ◽  
Author(s):  
Xu-Cheng ZHANG ◽  
Fu-Suo ZHANG ◽  
Xian-Feng YU ◽  
Xin-Ping CHEN

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Helen N. Fones

Abstract Zymoseptoria tritici causes Septoria tritici blotch (STB) of wheat, an economically important disease causing yield losses of up to 10% despite the use of fungicides and resistant cultivars. Z. tritici infection is symptomless for around 10 days, during which time the fungus grows randomly across the leaf surface prior to entry through stomata. Wounded leaves show faster, more extensive STB, suggesting that wounds facilitate fungal entry. Wheat leaves also host epiphytic bacteria; these include ice-nucleating (INA+) bacteria, which induce frost damage at warmer temperatures than it otherwise occurs. Here, STB is shown to be more rapid and severe when wheat is exposed to both INA+ bacteria and sub-zero temperatures. This suggests that ice-nucleation-induced wounding of the wheat leaf provides additional openings for fungal entry. INA+ bacterial populations are shown to benefit from the presence of Z. tritici, indicating that this microbial interaction is mutualistic. Finally, control of INA+ bacteria is shown to reduce STB.


2020 ◽  
Author(s):  
Fares Bellameche ◽  
Chiara Pedrazzini ◽  
Brigitte Mauch-Mani ◽  
Fabio Mascher

AbstractThe hemibiotrophic fungus Zymoseptoria tritici is the causative agent of Septoria tritici leaf blotch (STB) disease of wheat (Triticum aestivum L.), the economically most damaging disease of wheat in Europe. Today, ecofriendly plant protection methods compatible with sustainable agriculture are strongly desirable. Here, we applied the two chemical inducers β-aminobutyric acid (BABA) and benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the two biotic inducers Pseudomonas protegens CHA0 (CHA0) and P. chlororaphis PCL1391 (PCL) on the roots of wheat seedlings in order to test their ability to induce resistance against STB. At 21 days after inoculation, only plants treated with BABA showed a smaller area covered by lesions and less pycnidia compared to the untreated control plants. We evaluated spore germination and fungal development on inoculated wheat leaves at early infection stages using calcofluor white staining. Overall, spores of Z. tritici germinated less on plants soil-drenched with BABA and BTH and their hyphal growth was significantly delayed. On the contrary, CHA0 and PCL seed treatments did not affect fungal growth in wheat leaves. In conclusion, BABA efficiently enhanced plant resistance to Z. tritici, BTH delayed fungal development at early stages while the two biotic inducers did not enhance resistance against STB disease.


2018 ◽  
Author(s):  
P. Karisto ◽  
S. Dora ◽  
A. Mikaberidze

AbstractInfection efficiency is a key epidemiological parameter that determines the proportion of pathogen spores able to infect and cause lesions once they have landed on a susceptible plant tissue. In this study, we present an improved method to measure infection efficiency of Zymoseptoria tritici using a replicated greenhouse experiment. Z. tritici is a fungal pathogen that infects wheat leaves and causes Septoria tritici blotch (STB), a major disease of wheat worldwide.We devised an original experimental setup, where we (i) attached living wheat leaves to metal plates allowing for time-resolved imaging of disease progress in planta. Since lesions were continuously appearing, expanding and merging during the period of up to three weeks, daily measurements were necessary for accurate counting of lesions. We also (ii) used reference membranes to characterize the density and the spatial distribution of inoculated spores on leaf surfaces. In this way, we captured the relationship between the number of lesions and the number of viable spores deposited on the leaves and estimated the infection efficiency of about 4 % from the slope of this relationship.Our study provides a proof of principle for an accurate and reliable measurement of infection efficiency of Z. tritici. The method opens opportunities for determining the genetic basis of the component of quantitative resistance that suppresses infection efficiency. This knowledge would improve breeding for quantitative resistance against STB, a control measure considered more durable than deployment of major resistance genes.


2020 ◽  
Vol 5 (2) ◽  
pp. 13-19
Author(s):  
Natalya Bakaeva

The purpose of the study is increasing the efficiency of using nitrogen fertilizers and its effect on nitrate-reducing capacity of the leaf apparatus. The research was conducted in 2016-2018 in the Central zone of the Samara re-gion. The predecessor is complete fellow. Svetoch winter wheat elite seed varieties were used for sowing. Seeding was carried out in the experimental fields of the laboratory «Agroecology» of the Samara state University. Nitrate and ammonium nitrogen content in soil layer of 0-30 cm depth was estimated before planting and after plant nutri-tion with nitrogen fertilizers in regard to the growth phases (tillering, elongation and heading), the content of nitro-gen, protein and nitrate reductase enzyme activity in leaves during plant development. Dynamics changes of nitro-gen content in the soil and after fertilization with nitrogen shows that during vegetation period of plants, the amount of nitrogen is sufficient for their growth. As the phenological phases of plants change, the content of nitrogen and protein in winter wheat leaves increases, and activity of the enzyme nitrate reductase lifts, which catalyzes nitrate regeneration to nitrite. The value of the activity of the enzyme nitrate reductase in leaves can serve as a criterion for evaluating the availability of plants with the nitrate form of nitrogen. In future, the activity of this enzyme can be used as an indicator of optimizing nitrogen nutrition of plants aimed at metabolic processes. The use of various nitrogen fertilizers, and to a greater extent ammonium nitrate, increased the supply of plants with nitrogen, which is later used by them in the reutilization of nitrogen from leaves to the emerging seed, thus contributing to quality of grain.


2008 ◽  
Vol 23 (2) ◽  
pp. 326-335
Author(s):  
Jacek Olszewski ◽  
Agnieszka Pszczółkowska ◽  
Tomasz Kulik ◽  
Gabriel Fordoński ◽  
Krystyna Płodzień ◽  
...  

The article presents the results of a vegetation experiment on studying an effect of increasing doses of nitrogen (factor С - N0; No.o5; No.io; N015; No.2o; N0,25 g/kg of absolutely dry soil) and pre-sowing inoculation of seeds with biological preparation "Risotorphine" (factor В - no inoculation; by inoculation) on the formation of vegetative mass and grain yield ofpeas at cultivating in the conditions of a poorly cultivated (factor A0) and of a medium cultivated (factor A f sod-podzolic soil. Cultivation degree of soil was expressed by such criteria as power of an arable horizon, value of metabolic acidity and content of mobile phosphorus, a degree of saturation of soil with bases. For experience tab there were used Mitscher-lich cups with a capacity of 5 kg of absolutely dry soil (a.d.s.), in 16 repetitions of options. The experiments were conducted in the conditions of vegetation site on the territory of University Scientific Centre "Lipogorie" of FSBEI Perm GATA, guided by a science-based methodology. When harvesting peas for a green mass more intensive development and productivity of plants (23.3 and 58.9, 40.0, 78.8 g/cup, respectively) in the phase of stem branching and budding a beginning offlowering that is recorded for its use on the background of inoculation, usage of mineral nitrogen in a dose of 0.10 g/kg on a poorly cultivated soil and 0.15 g/kg a.d.s. on a medium cultivated soil. Applying of higher doses of nitrogen has a depressing effect on development of assimilating surface of pea plants on a poorly and a medium cultivated soil. When raising pea plants before harvest maturity of grain: in the conditions of a poorly cultivated soil for yield at the level of 7.92 g/cup, the process of carrying on only an inoculation of seed with microbial preparation "Rizotorfin" can be considered; in the medium cultivated soil varieties, plant peas impose higher requirements for the level of mineral nutrition the maximum yield in the experiment (which 9.22 g/cup), noted at a combined use of inoculation and mineral nitrogen in a dose of 0.20 g/kg a.d.s.


2010 ◽  
Vol 18 (4) ◽  
pp. 748-752 ◽  
Author(s):  
Hao HU ◽  
You-Lu BAI ◽  
Li-Ping YANG ◽  
Yan-Li LU ◽  
Lei WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document