SPLIT-ROOT, GRAFTING AND GIRDLING AS EXPERIMENTAL TOOLS TO STUDY ROOT-TO SHOOT-TO ROOT SIGNALING

Author(s):  
Luana Ferreira Torres ◽  
Sara Adrián López de Andrade ◽  
Paulo Mazzafera
Keyword(s):  
2017 ◽  
Vol 53 (No. 2) ◽  
pp. 78-84 ◽  
Author(s):  
Boukerma Lamia ◽  
Benchabane Messaoud ◽  
Charif Ahmed ◽  
Khélif Lakhdar

The potential of Pseudomonas fluorescens PF15 and Pseudomonas putida PP27 to protect tomato plants against Fusarium wilt under greenhouse conditions was evaluated. In vitro antagonism showed a significant inhibition of the pathogen growth (47%) revealed by PF15. However, PP27 presented a 10% rate of the mycelium inhibition. An in situ experiment was conducted with split-root design for induced systemic resistance (ISR) and without split-root design to measure both ISR and antagonistic activities. Fluorescent Pseudomonas revealed a delay in the onset of symptoms and slower kinetics of disease progression compared to the pathogen control. McKinney’s index, which measures the severity of the disease, was reduced by 37–72%, and the levels of infection (incidence) by 7–36%.


1994 ◽  
Vol 90 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Sylvain Chaillou ◽  
James W. Rideout ◽  
C. David Raper, ◽  
Jean-Francois Morot-Gaudry

2009 ◽  
Vol 123 (2) ◽  
pp. 164-169 ◽  
Author(s):  
Houneida Attia ◽  
Sarra Nouaili ◽  
Abdelaziz Soltani ◽  
Mokhtar Lachaâl

2012 ◽  
Vol 102 (3) ◽  
pp. 260-266 ◽  
Author(s):  
A. Martinuz ◽  
A. Schouten ◽  
R. A. Sikora

The root-knot nematode, Meloidogyne incognita, is among the most damaging agricultural pests, particularly to tomato. The mutualistic endophytes Fusarium oxysporum strain Fo162 (Fo162) and Rhizobium etli strain G12 (G12) have been shown to systemically induce resistance toward M. incognita. By using triple-split-root tomato plants, spatially separated but simultaneous inoculation of both endophytes did not lead to additive reductions in M. incognita infection. More importantly, spatially separated inoculation of Fo162 and G12 led to a reduction in Fo162 root colonization of 35 and 39% when G12 was inoculated on a separate root section of the same plant in two independent experiments. In an additional split-root experiment, spatial separation of Fo162 and G12 resulted in a reduction of Fo162 root colonization of approximately 50% over the water controls in two independent experiments. The results suggested that the suppressive activity of G12 on Fo162 and M. incognita is possibly related to the induction of specific plant defense mechanisms. Thus, although Fo162 and G12 have the ability to systemically repress M. incognita infection in tomato, they can be considered incompatible biocontrol agents when both organisms are present simultaneously on the same root system.


1997 ◽  
Vol 43 (1) ◽  
pp. 1-8 ◽  
Author(s):  
M. Srinivasan ◽  
F. B. Holl ◽  
D. J. Petersen

The ability of Bacillus spp. to alter the nodulation of Phaseolus vulgaris by Rhizobium etli was assessed. The simultaneous presence of both Rhizobium etli TAL 182 and Bacillus megaterium S49 on plant roots during the early stages of plant growth was necessary for enhanced nodulation of Phaseolus vulgaris by the Rhizobium microsymbiont. Coinoculation with both bacterial species also facilitated heterologous nodulation of Rhizobium TAL 182 on Phaseolus acutifolius. These results are consistent with earlier reports of increased root hair proliferation and lateral root formation in response to coinoculation. Split-root experiments revealed that coinoculation partially suppressed host-controlled regulation of nodulation, implicating a plant interaction with the two bacterial species. Changes to the nodulation potential of R. etli due to coinoculation with Bacillus spp. demonstrate the potential for root-associated organisms other than rhizobia to alter the dynamics of the legume–Rhizobium symbiosis.Key words: Bacillus, nodulation enhancement, heterologous nodulation.


2004 ◽  
Vol 31 (10) ◽  
pp. 971 ◽  
Author(s):  
Darren M. Mingo ◽  
Julian C. Theobald ◽  
Mark A. Bacon ◽  
William J. Davies ◽  
Ian C. Dodd

Tomato (Lycopersicon esculentum Mill.) plants were grown in either a glasshouse (GH) or a controlled environment cabinet (CEC) to assess the effects of partial rootzone drying (PRD) on biomass allocation. Control and PRD plants received the same amounts of water. In control plants, water was equally distributed between two compartments of a split-root system. In PRD plants, only one compartment was watered while the other was allowed to dry. At the end of each drying cycle, wet and dry compartments were alternated. In the GH, total biomass did not differ between PRD and control plants after four cycles of PRD, but PRD increased root biomass by 55% as resources were partitioned away from shoot organs. In the CEC, leaf water potential did not differ between treatments at the end of either of two cycles of PRD, but stomatal conductance of PRD plants was 20% less at the end of the first cycle than at the beginning. After two cycles of PRD in the CEC, biomass did not differ between PRD and control plants, but PRD increased root biomass by 19% over the control plants. The promotion of root biomass in PRD plants was associated with the alternation of wet and dry compartments, with increased root biomass occurring in the re-watered compartment after previous exposure to soil drying. Promotion of root biomass in field-grown PRD plants may allow the root system to access resources (water and nutrients) that would otherwise be unavailable to control plants. This may contribute to the ability of PRD plants to maintain similar leaf water potentials to conventionally irrigated plants, even when smaller irrigation volumes are supplied.


2002 ◽  
Vol 27 (2) ◽  
pp. 141-150 ◽  
Author(s):  
RUI G. CARNEIRO ◽  
PAULO MAZZAFERA ◽  
LUIZ CARLOS C.B. FERRAZ ◽  
TAKASHI MURAOKA ◽  
PAULO CESAR O. TRIVELIN

Two soybean (Glycine max) cultivars were used in this study, Ocepar 4, rated as moderately resistant to Meloidogyne incognita race 3 but susceptible to M. javanica, and 'BR 16', susceptible to both nematodes. The effect of nematodes infection on the uptake and transport of N, P and Ca to the shoot was studied in plants growing in a split root system. The upper half was inoculated with 0, 3,000, 9,000 or 27,000 eggs/plant while the lower half received 15N, 32P or 45Ca. Infected plants showed an increase of root but a decrease of shoot mass with increasing inoculum levels. In general, total endogenous nutrients increased in the roots and tended to decrease in the shoots with increasing inoculum levels. When concentrations were calculated, there was an increase in the three nutrients in the roots, and an increase of Ca but no significant variation of N and P was observed in the shoots. The total amount of 15N in the roots increased at the highest inoculum levels but 32P and 45Ca decreased. In the shoots there was a reduction of 32P and 45Ca. The specific concentrations of the labelled nutrients (abundance or radioactivity/tissue mass) also showed a decrease of 32P and 45Ca in the shoots and roots of infected plants and an increase of 15N in the shoots. Considering that overall nutrient concentrations reflect cumulative nutrient uptake and the data from labelled elements gave information at a specific moment of the infection, thus nematodes do interfere with nutrient uptake and translocation.


Sign in / Sign up

Export Citation Format

Share Document