scholarly journals Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants?

2019 ◽  
Vol 131 ◽  
pp. 104982 ◽  
Author(s):  
Yunqiao Zhou ◽  
Jing Meng ◽  
Meng Zhang ◽  
Shuqin Chen ◽  
Bo He ◽  
...  
2020 ◽  
Author(s):  
José Gustavo Ronderos-Lara ◽  
Hugo Saldarriaga-Noreña ◽  
Pedro Guillermo Reyes-Romero ◽  
Luis Alberto Chávez-Almazán ◽  
Josefina Vergara-Sánchez ◽  
...  

In recent years, the presence of organic pollutants has received great attention due to their effects on public health and biota. Within this set of compounds, a new range of compounds that are characterized by their high persistence and low degradation have been identified, called Emerging Compounds. Emerging pollutants include a wide variety of products for daily use of different structures, domestic and industrial applications, such as: pesticides, industrial and personal hygiene products, hormones, and drugs, most of which are toxic, persistent and bioaccumulative. A characteristic of these types of pollutants is that current wastewater treatment plants are unable to remove them; they are designed to remove organic matter and nutrients in higher concentrations. In Mexico there is little information on the concentration levels of these compounds, due to the lack of public policies aimed at providing resources to institutions and researchers trained to carry out this type of study. On the other hand, the technological infrastructure of the wastewater treatment plants is insufficient for the country’s demand. This situation represents one of the greatest challenges for the authorities responsible for the management of water resources, in the immediate time if it is intended to preserve said resource and therefore take care of the health of the population.


2013 ◽  
Vol 5 (2) ◽  
pp. 428-433 ◽  
Author(s):  
Emanuele Magi ◽  
Carlo Scapolla ◽  
Marina Di Carro ◽  
Paola Rivaro ◽  
Kieu Thi Ngoc Nguyen

Author(s):  
Vaishnavi Koyilath Nandakumar ◽  
Sankar Ganesh Palani ◽  
Murari Raja Raja Varma

Abstract Microplastics are classified as emerging pollutants of the aquatic environment, necessitating a comprehensive understanding of their properties for successful management and treatment. Wastewater treatment plants (WWTPs) serve as point sources of microplastic pollution of the aquatic and terrestrial (eco)systems. The first part of this review explores the basic definitions of microplastics, sources, types, physical and chemical methods of identifying and characterizing microplastics in WWTPs. The next part of the review details the occurrence of microplastics in various unit processes of WWTPs and sewage sludge. Followed by this, various methods for removing microplastics from wastewater are presented. Finally, the research gaps in this area were identified, and suggestions for future perspectives were provided.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


Sign in / Sign up

Export Citation Format

Share Document