Effects of CO2 on the transformation of antibiotic resistance genes via increasing cell membrane channels

2019 ◽  
Vol 254 ◽  
pp. 113045 ◽  
Author(s):  
Junqi Liao ◽  
Yinguang Chen ◽  
Haining Huang
2019 ◽  
Author(s):  
Yue Wang ◽  
Ji Lu ◽  
Shuai Zhang ◽  
Jie Li ◽  
Likai Mao ◽  
...  

AbstractAntibiotic resistance is a global threat for public health. It is widely acknowledged that antibiotics at sub-inhibitory concentrations are important in disseminating antibiotic resistance via horizontal gene transfer. While there is high use of non-antibiotic human-targeted pharmaceuticals in our societies, the potential contribution of these on the spread of antibiotic resistance has been overlooked so far. Here, we report that commonly consumed non-antibiotic pharmaceuticals, including nonsteroidal anti-inflammatories (ibuprofen, naproxen, diclofenac), a lipid-lowering drug (gemfibrozil), and a β-blocker (propanolol), at clinically and environmentally relevant concentrations, significantly accelerated the conjugation of plasmid-borne antibiotic resistance genes. We looked at the response to these drugs by the bacteria involved in the gene transfer through various analyses that included monitoring reactive oxygen species (ROS) and cell membrane permeability by flow cytometry, cell arrangement, and whole-genome RNA and protein sequencing. We found the enhanced conjugation correlated well with increased production of ROS and cell membrane permeability. We also detected closer cell-to-cell contact and upregulated conjugal genes. Additionally, these non-antibiotic pharmaceuticals caused the bacteria to have responses similar to those detected when exposed to antibiotics, such as inducing the SOS response, and enhancing efflux pumps. The findings advance our understanding of the bacterial transfer of antibiotic resistance genes, and importantly emphasize concerns of non-antibiotic human-targeted pharmaceuticals for enhancing the spread of antibiotic resistance.


2020 ◽  
Author(s):  
Jianhua Guo ◽  
Shuai Zhang ◽  
Ji Lu ◽  
Yue Wang ◽  
Willy Verstraete ◽  
...  

Abstract Background: Antibiotic resistance genes (ARGs), heavy metal ions and nanoparticles (NPs) are emerging and ubiquitous contaminants in the environment. However, little is known about whether heavy metal-based NPs or ions could facilitate the dissemination of ARGs through natural transformation. This study evaluated the contributions of heavy metal-based NPs (Ag NPs, CuO NPs and ZnO NPs) and their ion forms (Ag + , Cu 2+ and Zn 2+ ) to the transformation of extracellular ARGs in Acinetobacter baylyi ADP1. Results: We found that these commonly-used NPs and ions from environmentally relevant concentrations can significantly promote the natural transformation frequency of ARGs by a factor of 11.0-folds, which is comparable to the effects of antibiotics. The enhanced transformation by Ag NPs, CuO NPs, Ag + and Cu 2+ was primarily associated with reactive oxygen species (ROS) over-production and cell membrane damage, which was also evident from up-regulations of both transcription and translation of ROS and outer membrane-related genes. Additionally, transmission electron microscope imaging revealed the roughened cell membrane after Ag NPs, CuO NPs, Ag + and Cu 2+ exposure. ZnO NPs and Zn 2+ might increase the natural transformation rate by stimulating the stress response and ATP synthesis. All tested NPs and ions resulted in up-regulating the competence and SOS response-associated genes. Conclusions: Our results demonstrate that Ag, CuO and ZnO-based NPs/ions from environmental concentrations could promote the natural transformation of plasmid-encoded ARGs into naturally competent A. baylyi . Our findings provide insights into the contributions of heavy metals and NPs to the spread of antibiotic resistance.


Author(s):  
Zhigang Yu ◽  
Yue Wang ◽  
Ji Lu ◽  
Philip L. Bond ◽  
Jianhua Guo

AbstractAntimicrobial resistance (AMR) poses a worldwide threat to human health and biosecurity. The spread of antibiotic resistance genes (ARGs) via conjugative plasmid transfer is a major contributor to the evolution of this resistance. Although permitted as safe food additives, compounds such as saccharine, sucralose, aspartame, and acesulfame potassium that are commonly used as nonnutritive sweeteners have recently been associated with shifts in the gut microbiota similar to those caused by antibiotics. As antibiotics can promote the spread of antibiotic resistance genes (ARGs), we hypothesize that these nonnutritive sweeteners could have a similar effect. Here, we demonstrate for the first time that saccharine, sucralose, aspartame, and acesulfame potassium could promote plasmid-mediated conjugative transfer in three established conjugation models between the same and different phylogenetic strains. The real-time dynamic conjugation process was visualized at the single-cell level. Bacteria exposed to the tested compounds exhibited increased reactive oxygen species (ROS) production, the SOS response, and gene transfer. In addition, cell membrane permeability increased in both parental bacteria under exposure to the tested compounds. The expression of genes involved in ROS detoxification, the SOS response, and cell membrane permeability was significantly upregulated under sweetener treatment. In conclusion, exposure to nonnutritive sweeteners enhances conjugation in bacteria. Our findings provide insight into AMR spread and indicate the potential risk associated with the presence of nonnutritive sweeteners.


2016 ◽  
Vol 1 (2) ◽  
pp. 22 ◽  
Author(s):  
Navindra Kumari Palanisamy ◽  
Parasakthi Navaratnam ◽  
Shamala Devi Sekaran

Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.


Sign in / Sign up

Export Citation Format

Share Document