Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS–BrC) in the Kathmandu Valley, Nepal: A 5-year study

2020 ◽  
Vol 261 ◽  
pp. 114239 ◽  
Author(s):  
Pengfei Chen ◽  
Shichang Kang ◽  
Lekhendra Tripathee ◽  
Kirpa Ram ◽  
Maheswar Rupakheti ◽  
...  
2013 ◽  
Vol 13 (7) ◽  
pp. 18233-18276 ◽  
Author(s):  
J. Liu ◽  
M. Bergin ◽  
H. Guo ◽  
L. King ◽  
N. Kotra ◽  
...  

Abstract. Light absorbing organic carbon, often termed brown carbon, has the potential to significantly contribute to the visible light absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon are poorly understood. With this in mind field measurements were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a central site and a road side site adjacent to a main highway near the city center. Fine particle brown carbon optical absorption is estimated based on Mie calculations using direct size resolved measurements of chromophores in filter extracts. Size-resolved atmospheric aerosol samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Fine particle absorption was also measured with a Multi-Angle Absorption Photometer (MAAP) and seven-wavelength Aethalometer. Scattering-corrected aethalometer and MAAP absorption were in good agreement at 670 nm and Mie-estimated absorption based on size-resolved EC data were within 30% of these optical instruments. When applied to solution measurements, at all sites, Mie-predicted brown carbon absorption at 350 nm contributed a significant fraction (20 to 40%) relative to total light absorption, with highest contributions at the rural site where organic to elemental carbon ratios were highest. Brown carbon absorption, however, was highest by the roadside site due to vehicle emissions. The multi-wavelength aethalometer did not detect brown carbon, having an absorption Ångstrom exponent near one. Although the results are within the estimated Aethalometer uncertainties, the direct measurement of brown carbon in solution definitively shows that it is present and this Mie analysis suggests it is optically important in the near UV range in both a rural and urban environment during summer when biomass burning emissions are low.


2016 ◽  
Author(s):  
Monique Teich ◽  
Dominik van Pinxteren ◽  
Michael Wang ◽  
Simonas Kecorius ◽  
Zhibin Wang ◽  
...  

Abstract. The relative contribution of eight nitrated aromatic compounds (NACs, nitrophenols + nitrated salicylic acids) to the light absorption of aqueous particle extracts and particulate brown carbon were determined from aerosol particle samples collected in Germany and China. High-volume filter samples were collected during six campaigns, performed at five locations in two seasons: (I) two campaigns with strong influence of biomass burning (BB) aerosol – at the TROPOS institute (winter, 2014, urban background, Leipzig, Germany) and the Melpitz research site (winter, 2014, rural background); (II) two campaigns with strong influence from biogenic emissions – at Melpitz (summer, 2014) and the forest site Waldstein (summer, 2014, Fichtelgebirge, Germany), and (III) two CAREBeijing-NCP campaigns – at Xianghe (summer, 2013, anthropogenic polluted background) and Wangdu (summer, 2014, anthropogenic polluted background with a distinct BB-episode), both in the North China Plain. The filter samples were analyzed for NAC concentrations and the light absorption of aqueous filter extracts was determined. Light absorption properties of particulate brown carbon were derived from a seven-wavelength Aethalometer during the campaigns at TROPOS (winter) and Waldstein (summer). The light absorption of the aqueous filter extracts was found to be pH dependent: at pH 10, the aqueous light absorption coefficient Abs370 and the mass absorption efficiency (MAE370) at 370 nm were a factor of 1.6 and 1.4 larger than at pH 2, respectively. In general, Abs370 ranged from 0.21–21.8 Mm−1 under acidic conditions and 0.63–27.2 Mm−1 under alkaline conditions, over all campaigns. The observed MAE370 was in a range of 0.10–1.79 m2 g−1 and 0.24–2.57 m2 g−1 for acidic and alkaline conditions, respectively. For MAE370 and Abs370, the observed values were higher in winter than in summer, in agreement with other studies. Furthermore, it was found that the MAE370 values in winter in Germany exceeded those of the Chinese summer background stations (average of 0.85±0.24 m2 g−1 compared to 0.47±0.15 m2 g−1). The lowest MAE was observed for the Waldstein (summer) campaign (average of 0.17±0.03 m2 g−1), indicating that freshly emitted biogenic aerosols are only weakly absorbing. In contrast, a strong relationship was found between the light absorption properties and the concentrations of levoglucosan, corroborating findings from other studies. Regarding the particulate light absorption at 370 nm, a mean particulate light absorption coefficient babs,370 of 54 Mm−1 and 6.0 Mm−1 was determined for the TROPOS (winter) and Waldstein (summer) campaigns, respectively, with average contributions of particulate brown carbon to babs,370 of 46 % at TROPOS (winter) and 15 % at Waldstein (summer). The absorption Ångström exponent of the ambient aerosol during the campaigns at TROPOS (winter) and Waldstein (summer) was found to be 1.5±0.1 and 1.2±0.3, respectively. Thus, the Aethalometer measurements support the findings from aqueous filter extracts of only weakly absorbing biogenic aerosols in comparison to the more polluted and BB influenced aerosol at TROPOS (winter). The mean contribution of NACs to the aqueous extract light absorption over all campaigns ranged from 0.10 %–1.25 % under acidic conditions and 0.13 %–3.71 % under alkaline conditions. The high variability among the measurement sites showed that the emission strengths of light absorbing compounds and the composition of brown carbon were very different for each site. The mean contribution of NACs to the particulate brown carbon light absorption was 0.10±0.06 % (acidic conditions) and 0.13±0.09 % (alkaline conditions) during the Waldstein (summer) campaign and 0.25±0.21 % (acidic conditions) and 1.13±1.03 % (alkaline conditions) during the TROPOS (winter) campaign. A correlation of NAC concentrations with Abs370 was observed for the BB-influenced campaigns at TROPOS (winter) and Melpitz (winter). The average contribution of NACs to the aqueous extract light absorption over all campaigns was found to be 5 times higher than their mass contribution to water-soluble organic carbon indicating that even small amounts of light-absorbing compounds can have a disproportionately high impact on the light absorption properties of particles.


2018 ◽  
Vol 187 ◽  
pp. 230-240 ◽  
Author(s):  
Yanfang Chen ◽  
Xinlei Ge ◽  
Hui Chen ◽  
Xinchun Xie ◽  
Yuntao Chen ◽  
...  

2017 ◽  
Vol 17 (3) ◽  
pp. 1653-1672 ◽  
Author(s):  
Monique Teich ◽  
Dominik van Pinxteren ◽  
Michael Wang ◽  
Simonas Kecorius ◽  
Zhibin Wang ◽  
...  

Abstract. The relative contributions of eight nitrated aromatic compounds (NACs: nitrophenols and nitrated salicylic acids) to the light absorption of aqueous particle extracts and particulate brown carbon were determined from aerosol particle samples collected in Germany and China.High-volume filter samples were collected during six campaigns, performed at five locations in two seasons: (I) two campaigns with strong influence of biomass-burning (BB) aerosol at the TROPOS institute (winter, 2014, urban background, Leipzig, Germany) and the Melpitz research site (winter, 2014, rural background); (II) two campaigns with strong influence from biogenic emissions at Melpitz (summer, 2014) and the forest site Waldstein (summer, 2014, Fichtelgebirge, Germany); and (III) two CAREBeijing-NCP campaigns at Xianghe (summer, 2013, anthropogenic polluted background) and Wangdu (summer, 2014, anthropogenic polluted background with a distinct BB episode), both in the North China Plain. The filter samples were analyzed for NAC concentrations and the light absorption of aqueous filter extracts was determined. Light absorption properties of particulate brown carbon were derived from a seven-wavelength aethalometer during the campaigns at TROPOS (winter) and Waldstein (summer). The light absorption of the aqueous filter extracts was found to be pH dependent, with larger values at higher pH. In general, the aqueous light absorption coefficient (Abs370) ranged from 0.21 to 21.8 Mm−1 under acidic conditions and 0.63 to 27.2 Mm−1 under alkaline conditions, over all campaigns. The observed mass absorption efficiency (MAE370) was in a range of 0.10–1.79 m2 g−1 and 0.24–2.57 m2 g−1 for acidic and alkaline conditions, respectively. For MAE370 and Abs370, the observed values were higher in winter than in summer, in agreement with other studies. The lowest MAE was observed for the Waldstein (summer) campaign (average of 0.17 ± 0.03 m2 g−1), indicating that freshly emitted biogenic aerosols are only weakly absorbing. In contrast, a strong relationship was found between the light absorption properties and the concentrations of levoglucosan, corroborating findings from other studies. Regarding the particulate light absorption at 370 nm, a mean particulate light absorption coefficient babs, 370 of 54 Mm−1 and 6.0 Mm−1 was determined for the TROPOS (winter) and Waldstein (summer) campaigns, respectively, with average contributions of particulate brown carbon to babs, 370 of 46 % at TROPOS (winter) and 15 % at Waldstein (summer). Thus, the aethalometer measurements support the findings from aqueous filter extracts of only weakly absorbing biogenic aerosols in comparison to the more polluted and BB influenced aerosol at TROPOS (winter). The mean contribution of NACs to the aqueous extract light absorption over all campaigns ranged from 0.10 to 1.25 % under acidic conditions and 0.13 to 3.71 % under alkaline conditions. The high variability among the measurement sites showed that the emission strengths of light-absorbing compounds and the composition of brown carbon were very different for each site. The mean contribution of NACs to the particulate brown carbon light absorption was 0.10 ± 0.06 % (acidic conditions) and 0.13 ± 0.09 % (alkaline conditions) during the Waldstein (summer) campaign and 0.25 ± 0.21 % (acidic conditions) and 1.13 ± 1.03 % (alkaline conditions) during the TROPOS (winter) campaign. The average contribution of NACs to the aqueous extract light absorption over all campaigns was found to be 5 times higher than their mass contribution to water-soluble organic carbon indicating that even small amounts of light-absorbing compounds can have a disproportionately high impact on the light absorption properties of particles.


2011 ◽  
Vol 11 (2) ◽  
pp. 6221-6258
Author(s):  
Y. Cheng ◽  
K.-B. He ◽  
M. Zheng ◽  
F.-K. Duan ◽  
Y.-L. Ma ◽  
...  

Abstract. The mass absorption cross-section (MAC) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer and the influences of mixing state and sources of carbonaceous aerosol were investigated. The MAC measured at 632 nm was 29.0 and 32.0 m2 g−1 during winter and summer respectively. MAC correlated well with the organic carbon (OC) to EC ratio (R2 = 0.91) which includes important information about the extent of secondary organic aerosol (SOA) production, indicating the enhancement of MAC by coating with SOA. The extrapolated MAC value was 10.5 m2 g−1 when the OC to EC ratio is zero, which was 5.6 m2 g−1 after correction by the enhancement factor (1.87) caused by the artifacts associated with the "filter-based" methods. The MAC also increased with sulphate (R2 = 0.84) when the sulphate concentration was below 10 μg m−3, whereas MAC and sulphate were only weekly related when the sulphate concentration was above 10 μg m−3, indicating the MAC of EC was also enhanced by coating with sulphate. Based on a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAC values were converted to the "equivalent MAC", which is the estimated value if using the same measurement methods as used in this study. The "equivalent MAC" was found to be much lower in the regions heavily impacted by biomass burning (e.g., India), probably due to the influence of brown carbon. Optical properties of water-soluble organic carbon (WSOC) in Beijing were also presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The mass absorption efficiency (σabs) of WSOC (measured at 365 nm) was 1.83 and 0.70 m2 g−1 during winter and summer respectively. The seasonal pattern of σabs was attributed to the difference in the precursors of SOA, because WSOC in Beijing has been demonstrated to be strongly linked to SOA. Moreover, the σabs of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the influence of biomass burning.


2017 ◽  
Vol 161 ◽  
pp. 90-98 ◽  
Author(s):  
Yangzhi Mo ◽  
Jun Li ◽  
Junwen Liu ◽  
Guangcai Zhong ◽  
Zhineng Cheng ◽  
...  

Author(s):  
Khairallah Atwi ◽  
Charles Perrie ◽  
Zezhen Cheng ◽  
Omar El Hajj ◽  
Rawad Saleh

The light-absorption properties of brown carbon (BrC) are often estimated using offline, solvent-extraction methods. However, recent studies have found evidence of insoluble species of BrC which are unaccounted for in...


2018 ◽  
Author(s):  
Deep Sengupta ◽  
Vera Samburova ◽  
Chiranjivi Bhattarai ◽  
Elena Kirillova ◽  
Lynn Mazzoleni ◽  
...  

Abstract. Fresh and atmospherically aged biomass-burning (BB) aerosol mass is mostly comprised of black carbon (BC) and organic carbon (OC) with its light-absorbing fraction – brown carbon (BrC). There is a lack of data on the physical and chemical properties of atmospheric BB aerosols, leading to high uncertainties in estimates of the BB impact on air quality and climate, especially for BrC. The polarity of chemical compounds influences their fate in the atmosphere including wet/dry deposition and chemical and physical processing. So far, most of the attention has been given to the water-soluble (polar) fraction of BrC, while the non-polar BrC fraction has been largely ignored. In the present study, the light absorption properties of polar and non-polar fractions of fresh and aged BB emissions were examined to estimate the contribution of different-polarity organic compounds to the light absorption properties of BB aerosols. In our experiments, four globally and regionally important fuels were burned under flaming and smoldering conditions in DRI’s combustion chamber. To mimic atmospheric oxidation processes (5–7 days), BB emissions were aged using an oxidation flow reactor (OFR). Fresh and OFR-aged BB aerosols were collected on filters and extracted with water and hexane to study absorption properties of polar and non-polar organic species. Spectrophotometric measurements over the 190 to 900 nm wavelength range showed that the non-polar (hexane-soluble) fraction is 2–3 times more absorbing than the polar (water-soluble) fraction. However, an increased absorbance was observed for the water extracts of oxidized/aged emissions while the absorption of the hexane extracts was lower for the aged emissions. Comparing the absorption Ångström Exponent (AAE) values, we observed changes in the light absorption properties of BB aerosols with aging that was dependent on the fuel types. The light absorption by HUmic LIke Substances (HULIS) was found to be higher in fuels characteristic of the southwestern USA. The absorption of the HULIS fraction was lower for OFR-aged BB emissions. Comparison of the light absorption properties of different polarity extracts (water, hexane, HULIS) provides insight into the chemical nature of BB BrC and its transformation during oxidation processes.


2018 ◽  
Vol 625 ◽  
pp. 246-251 ◽  
Author(s):  
Chong-Shu Zhu ◽  
Jun-Ji Cao ◽  
Ru-Jin Huang ◽  
Zhen-Xing Shen ◽  
Qi-Yuan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document