Elevation of NO3−-N from biochar amendment facilitates mitigating paddy CH4 emission stably over seven years

2021 ◽  
pp. 118707
Author(s):  
Qiong Nan ◽  
Chenxuan Fang ◽  
Linqi Cheng ◽  
Wang Hao ◽  
Weixiang Wu
2019 ◽  
Vol 42 (2) ◽  
pp. 483-497 ◽  
Author(s):  
Miaoying Wang ◽  
Chun Wang ◽  
Xingfu Lan ◽  
Abbas Ali Abid ◽  
Xuping Xu ◽  
...  

2018 ◽  
Author(s):  
Bahareh Hassanpour Guilvaiee ◽  
◽  
Tammo Steenhuis ◽  
Larry Geohring

Biochar ◽  
2021 ◽  
Author(s):  
Qian Yang ◽  
Yongjie Wang ◽  
Huan Zhong

AbstractThe transformation of mercury (Hg) into the more toxic and bioaccumulative form methylmercury (MeHg) in soils and sediments can lead to the biomagnification of MeHg through the food chain, which poses ecological and health risks. In the last decade, biochar application, an in situ remediation technique, has been shown to be effective in mitigating the risks from Hg in soils and sediments. However, uncertainties associated with biochar use and its underlying mechanisms remain. Here, we summarize recent studies on the effects and advantages of biochar amendment related to Hg biogeochemistry and its bioavailability in soils and sediments and systematically analyze the progress made in understanding the underlying mechanisms responsible for reductions in Hg bioaccumulation. The existing literature indicates (1) that biochar application decreases the mobility of inorganic Hg in soils and sediments and (2) that biochar can reduce the bioavailability of MeHg and its accumulation in crops but has a complex effect on net MeHg production. In this review, two main mechanisms, a direct mechanism (e.g., Hg-biochar binding) and an indirect mechanism (e.g., biochar-impacted sulfur cycling and thus Hg-soil binding), that explain the reduction in Hg bioavailability by biochar amendment based on the interactions among biochar, soil and Hg under redox conditions are highlighted. Furthermore, the existing problems with the use of biochar to treat Hg-contaminated soils and sediments, such as the appropriate dose and the long-term effectiveness of biochar, are discussed. Further research involving laboratory tests and field applications is necessary to obtain a mechanistic understanding of the role of biochar in reducing Hg bioavailability in diverse soil types under varying redox conditions and to develop completely green and sustainable biochar-based functional materials for mitigating Hg-related health risks.


Chemosphere ◽  
2021 ◽  
pp. 131129
Author(s):  
Woo Jin Chung ◽  
Soon Woong Chang ◽  
Dhiraj Kumar Chaudhary ◽  
Joung Du Shin ◽  
Hyunook Kim ◽  
...  

2021 ◽  
Vol 411 ◽  
pp. 125123
Author(s):  
Weiwei Zhai ◽  
Ting Guo ◽  
Su Yang ◽  
Williamson Gustave ◽  
Muhammad Zaffar Hashmi ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 798
Author(s):  
Valentina Pidlisnyuk ◽  
Andriy Herts ◽  
Volodymyr Khomenchuk ◽  
Aigerim Mamirova ◽  
Oleksandr Kononchuk ◽  
...  

Miscanthus × giganteus (M. × giganteus) is a perspective plant produced on marginal and contaminated lands with biomass used for energy or bioproducts. In the current study, M. × giganteus development was tested in the diesel-contaminated soils (ranged from 250 mg kg−1 to 5000 mg kg−1) and the growth dynamic, leaves quantity, plants total area, number of harvested stems and leaves, SPAD and NPQt parameters were evaluated. Results showed a remarkable M. × giganteus growth in a selected interval of diesel-contaminated soil with sufficient harvested biomass. The amendment of soil by biochar 1 (produced from wastewater sludge) and biochar 2 (produced from a mixture of wood waste and biohumus) improved the crop’s morphological and physiological parameters. Biochar 1 stimulated the increase of the stems’ biomass, while biochar 2 increased the leaves biomass. The plants growing in the uncontaminated soil decreased the content of NO3, pH (KCl), P2O5 and increased the content of NH4. Photosynthesis parameters showed that incorporating biochar 1 and biochar 2 to the diesel-contaminated soil prolonged the plants’ vegetation, which was more potent for biochar 1. M. × giganteus utilization united with biochar amendment can be recommended to remediate diesel-contaminated land in concentration range 250–5000 mg kg−1.


2009 ◽  
Vol 111 (1-2) ◽  
pp. 81-84 ◽  
Author(s):  
Hidetoshi Asai ◽  
Benjamin K. Samson ◽  
Haefele M. Stephan ◽  
Khamdok Songyikhangsuthor ◽  
Koki Homma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document