Long-term exposure to fine particulate matter and osteoporotic fracture: A case–control study in Taiwan

2021 ◽  
pp. 110888
Author(s):  
Yung-Cheng Chiu ◽  
Yu-Ting Lin ◽  
Ying-Fang Hsia ◽  
Chau-Ren Jung ◽  
Yen-Chun Lo ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Masahiro Tahara ◽  
Yoshihisa Fujino ◽  
Kei Yamasaki ◽  
Keishi Oda ◽  
Takashi Kido ◽  
...  

Abstract Background Short-term exposure to ozone and nitrogen dioxide is a risk factor for acute exacerbation (AE) of idiopathic pulmonary fibrosis (AE-IPF). The comprehensive roles of exposure to fine particulate matter in AE-IPF remain unclear. We aim to investigate the association of short-term exposure to fine particulate matter with the incidence of AE-IPF and to determine the exposure-risk time window during 3 months before the diagnosis of AE-IPF. Methods IPF patients were retrospectively identified from the nationwide registry in Japan. We conducted a case–control study to assess the correlation between AE-IPF incidence and short-term exposure to eight air pollutants, including particulate matter < 2.5 µm (PM2.5). In the time-series data, we compared monthly mean exposure concentrations between months with AE (case months) and those without AE (control months). We used multilevel mixed-effects logistic regression models to consider individual and institutional-level variables, and also adjusted these models for several covariates, including temperature and humidity. An additional analysis with different monthly lag periods was conducted to determine the risk-exposure time window for 3 months before the diagnosis of AE-IPF. Results Overall, 152 patients with surgically diagnosed IPF were analyzed. AE-IPF was significantly associated with an increased mean exposure level of nitric oxide (NO) and PM2.5 30 days prior to AE diagnosis. Adjusted odds ratio (OR) with a 10 unit increase in NO was 1.46 [95% confidence interval (CI) 1.11–1.93], and PM2.5 was 2.56 (95% CI 1.27–5.15). Additional analysis revealed that AE-IPF was associated with exposure to NO during the lag periods lag 1, lag 2, lag 1–2, and lag 1–3, and PM2.5 during the lag periods lag 1 and lag 1–2. Conclusions Our results show that PM2.5 is a risk factor for AE-IPF, and the risk-exposure time window related to AE-IPF may lie within 1–2 months before the AE diagnosis. Further investigation is needed on the novel findings regarding the exposure to NO and AE-IPF.


Author(s):  
Tommaso Filippini ◽  
Jessica Mandrioli ◽  
Carlotta Malagoli ◽  
Sofia Costanzini ◽  
Andrea Cherubini ◽  
...  

(1) Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with still unknown etiology. Some occupational and environmental risk factors have been suggested, including long-term air pollutant exposure. We carried out a pilot case-control study in order to evaluate ALS risk due to particulate matter with a diameter of ≤10 µm (PM10) as a proxy of vehicular traffic exposure. (2) Methods: We recruited ALS patients and controls referred to the Modena Neurology ALS Care Center between 1994 and 2015. Using a geographical information system, we modeled PM10 concentrations due to traffic emissions at the geocoded residence address at the date of case diagnosis. We computed the odds ratio (OR) and 95% confidence interval (CI) of ALS according to increasing PM10 exposure, using an unconditional logistic regression model adjusted for age and sex. (3) Results: For the 132 study participants (52 cases and 80 controls), the average of annual median and maximum PM10 concentrations were 5.2 and 38.6 µg/m3, respectively. Using fixed cutpoints at 5, 10, and 20 of the annual median PM10 levels, and compared with exposure <5 µg/m3, we found no excess ALS risk at 5–10 µg/m3 (OR 0.87, 95% CI 0.39–1.96), 10–20 µg/m3 (0.94, 95% CI 0.24–3.70), and ≥20 µg/m3 (0.87, 95% CI 0.05–15.01). Based on maximum PM10 concentrations, we found a statistically unstable excess ALS risk for subjects exposed at 10–20 µg/m3 (OR 4.27, 95% CI 0.69–26.51) compared with those exposed <10 µg/m3. However, risk decreased at 20–50 µg/m3 (OR 1.49, 95% CI 0.39–5.75) and ≥50 µg/m3 (1.16, 95% CI 0.28–4.82). ALS risk in increasing tertiles of exposure showed a similar null association, while comparison between the highest and the three lowest quartiles lumped together showed little evidence for an excess risk at PM10 concentrations (OR 1.13, 95% CI 0.50–2.55). After restricting the analysis to subjects with stable residence, we found substantially similar results. (4) Conclusions: In this pilot study, we found limited evidence of an increased ALS risk due to long-term exposure at high PM10 concentration, though the high statistical imprecision of the risk estimates, due to the small sample size, particularly in some exposure categories, limited our capacity to detect small increases in risk, and further larger studies are needed to assess this relation.


Author(s):  
César Fernández-de-las-Peñas ◽  
Juan Torres-Macho ◽  
Maria Velasco-Arribas ◽  
Jose A. Arias-Navalón ◽  
Carlos Guijarro ◽  
...  

2017 ◽  
Vol 218 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Konstantia Angelidou ◽  
Peter W Hunt ◽  
Alan L Landay ◽  
Cara C Wilson ◽  
Benigno Rodriguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document