scholarly journals A method to include reservoir operations in catchment hydrological models using SHETRAN

2021 ◽  
Vol 138 ◽  
pp. 104980
Author(s):  
Daryl Hughes ◽  
Stephen Birkinshaw ◽  
Geoff Parkin
2007 ◽  
Vol 2 (1) ◽  
Author(s):  
M. Hochedlinger ◽  
W. Sprung ◽  
H. Kainz ◽  
K. König

The simulation of combined sewer overflow volumes and loads is important for the assessment of the overflow and overflow load to the receiving water to predict the hydraulic or the pollution impact. Hydrodynamic models are very data-intensive and time-consuming for long-term quality modelling. Hence, for long-term modelling, hydrological models are used to predict the storm flow in a fast way. However, in most cases, a constant rain intensity is used as load for the simulation, but in practice even for small catchments rain occurs in rain cells, which are not constant over the whole catchment area. This paper presents the results of quality modelling considering moving storms depending on the rain cell velocity and its moving direction. Additionally, tipping bucket gauge failures and different corrections are also taken into account. The results evidence the importance of these considerations for precipitation due the effects on overflow load and show the difference up to 28% of corrected and uncorrected data and of moving rain cells instead of constant raining intensities.


2021 ◽  
pp. 100093
Author(s):  
Ico Broekhuizen ◽  
Santiago Sandoval ◽  
Hanxue Gao ◽  
Felipe Mendez-Rios ◽  
Günther Leonhardt ◽  
...  

2021 ◽  
Vol 35 (5) ◽  
pp. 1547-1571
Author(s):  
Xiaoyan Zhai ◽  
Liang Guo ◽  
Ronghua Liu ◽  
Yongyong Zhang ◽  
Yongqiang Zhang

World ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 205-215
Author(s):  
Joshua Mullenite

In this article, I review a cross-section of research in socio-hydrology from across disciplines in order to better understand the current role of historical-archival analysis in the development of socio-hydrological scholarship. I argue that despite its widespread use in environmental history, science and technology studies, anthropology, and human geography, archival methods are currently underutilized in socio-hydrological scholarship more broadly, particularly in the development of socio-hydrological models. Drawing on archival research conducted in relation to the socio-hydrology of coastal Guyana, I demonstrate the ways in which such scholarship can be readily incorporated into model development.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1520
Author(s):  
Zheng Jiang ◽  
Quanzhong Huang ◽  
Gendong Li ◽  
Guangyong Li

The parameters of water movement and solute transport models are essential for the accurate simulation of soil moisture and salinity, particularly for layered soils in field conditions. Parameter estimation can be achieved using the inverse modeling method. However, this type of method cannot fully consider the uncertainties of measurements, boundary conditions, and parameters, resulting in inaccurate estimations of parameters and predictions of state variables. The ensemble Kalman filter (EnKF) is well-suited to data assimilation and parameter prediction in Situations with large numbers of variables and uncertainties. Thus, in this study, the EnKF was used to estimate the parameters of water movement and solute transport in layered, variably saturated soils. Our results indicate that when used in conjunction with the HYDRUS-1D software (University of California Riverside, California, CA, USA) the EnKF effectively estimates parameters and predicts state variables for layered, variably saturated soils. The assimilation of factors such as the initial perturbation and ensemble size significantly affected in the simulated results. A proposed ensemble size range of 50–100 was used when applying the EnKF to the highly nonlinear hydrological models of the present study. Although the simulation results for moisture did not exhibit substantial improvement with the assimilation, the simulation of the salinity was significantly improved through the assimilation of the salinity and relative solutetransport parameters. Reducing the uncertainties in measured data can improve the goodness-of-fit in the application of the EnKF method. Sparse field condition observation data also benefited from the accurate measurement of state variables in the case of EnKF assimilation. However, the application of the EnKF algorithm for layered, variably saturated soils with hydrological models requires further study, because it is a challenging and highly nonlinear problem.


Sign in / Sign up

Export Citation Format

Share Document