Excretory over-expression of Bacillus sp. G1 cyclodextrin glucanotransferase (CGTase) in Escherichia coli: Optimization of the cultivation conditions by response surface methodology

2007 ◽  
Vol 40 (5) ◽  
pp. 1256-1263 ◽  
Author(s):  
Po Kim Lo ◽  
Osman Hassan ◽  
Arshad Ahmad ◽  
Nor Muhammad Mahadi ◽  
Rosli Md. Illias
2020 ◽  
Vol 16 (4) ◽  
pp. 767-775
Author(s):  
Nguyen Thi Hien Trang ◽  
Le Thanh Hoang ◽  
Do Thi Tuyen

Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. In previous study, the L-asparaginase from Erwinia chrysanthermy was expressed in Escherichia coli BL21(DE3). The recombinant L-asparaginase was produced from recombinant E.coli BL21(DE3) under different cultivation conditions (inducer concentration, inoculum concentration and KH2PO4 concentration). The optimized conditions by response surface methodology using face centered central composite design. The analysis of variance coupled with larger value of R2 (0.9) showed that the quadratic model used for the prediction was highly significant (p < 0.05). Under the optimized conditions, the model produced L-asparaginase activity of 123.74 U/ml at 1.03 mM IPTG, 3% (v/v) inoculum and 0.5% (w/v) KH2PO4. Recombinant protein was purified by two step using gel filtration and DEAE chromatography. The purified L-asparaginase had a molecular mass of 37 kDa with specific activity of 462 U/mg and identified by MALDI-TOF mass spectrometry. Results of MALDI-TOF analysis confirmed that recombinant protein was L-asparaginase II. Recombinant L-asparaginase has antiproliferative activity with K562 cell line. In conclusion, this study has innovatively developed cultivation conditions for better production of recombinant L-asparaginase in shake flask culture.


2012 ◽  
Vol 32 (4) ◽  
pp. 415-425 ◽  
Author(s):  
Maryam Shahnia ◽  
Donald W. Schaffner ◽  
Ali Khanlarkhani ◽  
Farzaneh Shahraz ◽  
Behrad Radmehr ◽  
...  

2018 ◽  
Vol 67 ◽  
pp. 02051
Author(s):  
Misri Gozan ◽  
Andre Fahriz Harahap ◽  
Chandra Paska Bakti ◽  
Siswa Setyahadi

Indonesia has abundant ethanol biomass feedstocks. However the second-generation ethanol production process is still hampered by the unavailability of cellulase enzyme in the process of decomposition of lignocellulose into saccharides that can be processed into ethanol through fermentation. Cellulase is known as exozyme produced by Bacillus sp. in submerged fermentation. In this study, cellulase production by Bacillus sp. CC BPPT RK2 on natural and abundant agricultural waste substrates (rice bran and coconut water) was evaluated by investigating the optimum conditions for cellulase production in a 50 ml laboratory scale. Preliminary test using Luria Bentani (LB) medium with additional CMC (1%) were done to select optimum range of pH and Temperature. The preliminary tests results were then followed by optimization of pH and temperature, which were carried out using response surface methodology (RSM). RSM optimization model showed optimum values 6.23 for pH and 40.04 °C, with 14 terms (each with 1 degree of freedom), 4 linear effects, 6 interaction effects and 4 quadratic effects. These optimization by RSM results were slightly different compared to preliminary test, showing the effect of interactions between parameters. The characteristics of interaction among variables tested against the cellulase activity are reported in this study including: positive effects on cellulase activity of the resulting responses; negative interactions affecting the response of cellulase activity; synergistic interaction; and antagonistic interactions between each other.


Sign in / Sign up

Export Citation Format

Share Document