sheep wool
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 89)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
pp. 237-248
Author(s):  
K.N. Bharath ◽  
S.G. Dileepkumar ◽  
G.B. Manjunatha ◽  
S.J. Amith Kumar ◽  
S. Indran ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 365
Author(s):  
Gary D. Gillespie ◽  
Oyinlola Dada ◽  
Kevin P. McDonnell

Suppressed wool prices in Ireland over the last number of years has led to situations where the cost of shearing animals is greater than the wools’ value, leading to net losses per animal for farmers. Populations of sheep in Ireland and nutrient values of wool from literature sources were used to determine the quantity of nutrients that could be produced on an annual basis using hydrolysis techniques. Results of this study suggest that up to 15.8% of the nitrogen required to produce Ireland’s cereal crops can be met annually using hydrolysed sheep wool in an economically feasible manner along with considerable amounts of sulphur, zinc, and copper. Most of the cost associated with the process is the purchasing of wool from farmers at an economically favourable level for farmers. Based on the spatial distribution of these animals, the town of Athlone is the most suitable location for a processing facility.


2021 ◽  
Vol 7 (12) ◽  
pp. 2068-2082
Author(s):  
Fatima Zohra El Wardi ◽  
Sara Ladouy ◽  
Abdelhamid Khabbazi ◽  
Khalid Ibaaz ◽  
Asmae Khaldoun

Cork is an ecological, natural, and renewable additive, an excellent thermal and acoustic insulator. All these attributes encourage its use in the building sector. Adding this additive to the Earth leads to a more lightweight composite with better thermal performance than the Earth alone. Unfortunately, the mechanical performance of this composite is degraded significantly, limiting its use in construction applications. The authors propose in this study to stabilize the clay-cork composite using natural stabilizers. A chemical stabilization was tested using local quick-lime, in addition to a physical stabilization using natural sheep-wool fibers. The primary purpose is to propose eco-friendly construction material with enhanced thermal and mechanical properties and the lowest environmental impact based on local and ecological raw materials to encourage more sustainable and low-energy constructions. First, physicochemical and mineralogical characterization of used clay was investigated. Then, an experimental investigation was conducted to identify the lime content that allows the optimal stabilization for the used clay. In this context, many different specimens of Bensmim soil stabilized with lime at six many contents 0, 10, 20, 30, 40, 50, and 70% were prepared and tested. The obtained results showed that the optimal lime content for the better stabilization of the used soil is about 30%. Next, an experimental study of thermomechanical properties was conducted on unfired clay bricks mixed with expended cork granules and stabilized by the addition of variable proportions of quick-lime 0, 10 and 30% and sheep-wool fibers 0, 1, and 2%. The mechanical performance of the specimens was investigated in terms of compressive and flexural strengths. At the same time, thermal quality was qualified through evaluating thermal conductivity using the steady-state Asymmetrical Hot Plate test method. The very encouraging experimental findings showed that using lime and sheep-wool fibers at the studied addition content resulted in lightweight composites with lower thermal conductivity and higher compressive and flexural strength than reference samples. The highest thermomechanical performances are obtained with clay-cork blocks reinforced with 30% lime content and 2% sheep-wool fibers. This block recorded values of 583 kg/m3, 0.155 W/m/K, 1.55 MPa, and 3.91 MPa, for bulk density, thermal conductivity, flexural and compressive strength respectively, compared to 765 kg/m3, 0.238 W/m/K, 0.96 MPa and 2.29 MPa for control samples. New material presents lightweight material for both improved thermal and mechanical qualities encouraging its use in building applications. Doi: 10.28991/cej-2021-03091778 Full Text: PDF


2021 ◽  
pp. 004051752110428
Author(s):  
Faisal Aboelkasim Allafi ◽  
Md Sohrab Hossain ◽  
Marwan Shaah ◽  
Japarang Lalung ◽  
Mohd Omar Ab Kadir ◽  
...  

There is increasing concern regarding the existing sheep wool processing technology in the textile industry owing to the enormous volume of toxic effluents generated. The application of supercritical carbon dioxide (scCO2) in sheep wool processing is cleaner and increases wool fiber production while avoiding toxic effluent generation. scCO2 is a novel clean technology that can be utilized in sheep processing for sterilization, cleaning, and drying sheep wool at the same time. In the present study, scCO2 was used to treat sheep wool with varying pressure, temperature, and treatment time. These parameters influence the scCO2 treatment of sheep wool fiber through the inactivation of microorganisms and improvement of the whiteness index. The identification of bacteria in sheep wool was carried out based on biochemical analysis by molecular means, using 16s rRNA sequencing. It was found that scCO2 completely inactivated the microorganisms present in sheep wool and potentially enhanced the percentage whiteness index at the highest pressure of 30 MPa, temperature of 80°C, and treatment time of 80 min. Several analytical methods were employed to assess the physicochemical, thermal, and morphological properties of untreated and scCO2 treated sheep wool fibers. The results show that scCO2 effectively removes the impurities and completely inactivates the microorganisms present in sheep wool. The findings of the present study reveal that scCO2 can be utilized as an alternative treatment technology for sheep wool processing in the textile industry.


2021 ◽  
pp. 1-19
Author(s):  
Faisal Aboelkasim Allafi ◽  
Md Sohrab Hossain ◽  
Marwan Shaah ◽  
Japarang Lalung ◽  
Mohd Omar Ab Kadir ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5206
Author(s):  
Jana Braniša ◽  
Angela Kleinová ◽  
Klaudia Jomová ◽  
Róbert Weissabel ◽  
Marcel Cvik ◽  
...  

The effect of humidity on sheep wool during irradiation by an accelerated electron beam was examined. Each of the samples with 10%, 53%, and 97% relative humidity (RH) absorbed a dose of 0, 109, and 257 kGy, respectively. After being freely kept in common laboratory conditions, the samples were subjected to batch Co(II) sorption experiments monitored with VIS spectrometry for different lapses from electron beam exposure. Along with the sorption, FTIR spectral analysis of the wool samples was conducted for cysteic acid and cystine monoxide, and later, the examination was completed, with pH measuring 0.05 molar KCl extract from the wool samples. Besides a relationship to the absorbed dose and lapse, the sorptivity results showed considerable dependence on wool humidity under exposure. When humidity was deficient (10% RH), the sorptivity was lower due to limited transformation of cystine monoxide to cysteic acid. The wool pre-conditioned at 53% RH, which is the humidity close to common environmental conditions, demonstrated the best Co(II) sorptivity in any case. This finding enables the elimination of pre-exposure wool conditioning in practice. Under excessive humidity of 97% RH and enough high dose of 257 kGy, radiolysis of water occurred, deteriorating the sorptivity. Each wool humidity, dose, and lapse showed a particular scenario. The time and humidity variations in the sorptivity for the non-irradiated sample were a little surprising; despite the absence of electron irradiation, relevant results indicated a strong sensitivity to pre-condition humidity and lapse from the start of the monitoring.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4830
Author(s):  
Alessandro P. Fantilli ◽  
Daria Jóźwiak-Niedźwiedzka ◽  
Piotr Denis

Three series of tests performed on fibre-reinforced gypsum composites are described herein. Sheep wool fibres and hemp fibres were used as reinforcement. The aim was to evaluate the capability of these biomaterials to enhance the fracture toughness of the gypsum matrix. The mechanical properties were measured by means of flexural tests on small specimens, whereas scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction were used to analyse the microstructure and composition of the fibres and of the gypsum composites. As a result, wool fibres were shown to improve the mechanical performance of the gypsum matrix, better than hemp fibres. This is due to the high adhesion at the interface of the fibre and gypsum matrix, because the latter tends to roughen the surface of the wool and, consequently to increase the bond strength. This preliminary research carried out shows that this type of biofiber—a waste material—can be considered a promising building material in sustainable and environmentally friendly engineering.


Sign in / Sign up

Export Citation Format

Share Document