Ternary biogenic silica/magnetite/graphene oxide composite for the hyperactivation of Candida rugosa lipase in the esterification production of ethyl valerate

2021 ◽  
Vol 148 ◽  
pp. 109807
Author(s):  
Adikwu Gowon Jacob ◽  
Roswanira Abdul Wahab ◽  
Naji Arafat Mahat
Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3854
Author(s):  
Adikwu Gowon Jacob ◽  
Roswanira Abdul Wahab ◽  
Mailin Misson

Inorganic biopolymer-based nanocomposites are useful for stabilizing lipases for enhanced catalytic performance and easy separation. Herein, we report the operational stability, regenerability, and thermodynamics studies of the ternary biogenic silica/magnetite/graphene oxide nanocomposite (SiO2/Fe3O4/GO) as a support for Candida rugosa lipase (CRL). The X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field-electron scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM), and nitrogen adsorption/desorption data on the support and biocatalyst corroborated their successful fabrication. XPS revealed the Fe3O4 adopted Fe2+ and Fe3+ oxidation states, while XRD data of GO yielded a peak at 2θ = 11.67°, with the SiO2/Fe3O4/GO revealing a high surface area (≈261 m2/g). The fourier transform infrared (FTIR) spectra affirmed the successful fabricated supports and catalyst. The half-life and thermodynamic parameters of the superparamagnetic immobilized CRL (CRL/SiO2/Fe3O4/GO) improved over the free CRL. The microwave-regenerated CRL/SiO2/Fe3O4/GO (≈82%) exhibited higher catalytic activity than ultrasonic-regenerated (≈71%) ones. Lower activation (Ea) and higher deactivation energies (Ed) were also noted for the CRL/SiO2/Fe3O4/GO (13.87 kJ/mol, 32.32 kJ/mol) than free CRL (15.26 kJ/mol, 27.60 kJ/mol). A peak at 4.28 min in the gas chromatograph-flame ionization detection (GC-FID) chromatogram of the purified ethyl valerate supported the unique six types of 14 hydrogen atoms of the ester (CAS: 539-82-2) in the proton nuclear magnetic resonance (1H-NMR) data. The results collectively demonstrated the suitability of SiO2/Fe3O4/GO in stabilizing CRL for improved operational stability and thermodynamics and permitted biocatalyst regenerability.


The Analyst ◽  
2019 ◽  
Vol 144 (6) ◽  
pp. 1960-1967 ◽  
Author(s):  
Chao Chen ◽  
Pengcheng Zhao ◽  
Meijun Ni ◽  
Chunyan Li ◽  
Yixi Xie ◽  
...  

A temperature-induced sensing film consisting of poly(N-vinylcaprolactam) (PVCL), graphene oxide (GO) and glucose oxidase (GOD) was fabricated and used to modify a glassy carbon electrode (GCE).


2021 ◽  
Vol 717 (1) ◽  
pp. 60-71
Author(s):  
M. A. Hodlevska ◽  
R. I. Zapukhlyak ◽  
V. M. Boychuk ◽  
V. O. Kotsyubynsky ◽  
A. I. Kachmar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document