scholarly journals Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction

2013 ◽  
Vol 364 ◽  
pp. 111-122 ◽  
Author(s):  
Michael J. Henehan ◽  
James W.B. Rae ◽  
Gavin L. Foster ◽  
Jonathan Erez ◽  
Katherine C. Prentice ◽  
...  
Author(s):  
William H. Zucker

Planktonic foraminifera are widely-distributed and abundant zooplankters. They are significant as water mass indicators and provide evidence of paleotemperatures and events which occurred during Pleistocene glaciation. In spite of their ecological and paleological significance, little is known of their cell biology. There are few cytological studies of these organisms at the light microscope level and some recent reports of their ultrastructure.Specimens of Globigerinoides ruber, Globigerina bulloides, Globigerinoides conglobatus and Globigerinita glutinata were collected in Bermuda waters and fixed in a cold cacodylate-buffered 6% glutaraldehyde solution for two hours. They were then rinsed, post-fixed in Palade's fluid, rinsed again and stained with uranyl acetate. This was followed by graded ethanol dehydration, during which they were identified and picked clean of debris. The specimens were finally embedded in Epon 812 by placing each organism in a separate BEEM capsule. After sectioning with a diamond knife, stained sections were viewed in a Philips 200 electron microscope.


2018 ◽  
Vol 487 ◽  
pp. 138-150 ◽  
Author(s):  
Markus Raitzsch ◽  
Jelle Bijma ◽  
Albert Benthien ◽  
Klaus-Uwe Richter ◽  
Grit Steinhoefel ◽  
...  

2021 ◽  
Vol 925 (1) ◽  
pp. 012014
Author(s):  
D R Junita ◽  
L Gustiantini ◽  
A Sartimbul ◽  
L I Bernawis ◽  
S A Piranti

Abstract Foraminifera is very diverse and adaptive, both in its morphology and biology. It is a potential bioindicator to understand the ecological and physical conditions of the ancient and modern waters based on their distribution. It has been well confirmed that the abundance of foraminifera (as a fossil) in sediment can reflect the ocean conditions above (mixed layer to upper ocean) where it was deposited. Planktonic foraminifera however can be considered as passive particles, their movement is carried by ocean currents. In consequence, the foraminifera abundance may represent more wider ocean condition according to the ocean current pattern. This study aims to examine the role of ocean currents in the distribution of foraminifera in the Sulawesi Sea. Ten gravity core sediment samples from 73-3009 m water depth were retrieved by RV Geomarin III from the Marine Geological Institute, Indonesia. We conducted quantitative analysis, including calculation of abundance and cluster analysis. Two decades (1992-2012) of ocean current simulated data from the Hybrid Coordinate Ocean Model (HYCOM) is used in this analysis, extending from 115°E-140°E and 8°N-2°S. The result indicates that planktonic foraminifera is abundant in the Sulawesi Sea by 86.3%. There were several predominant planktonic species such as Globigerinoides ruber (22.6%), Globigerina bulloides (15.3%), and Neoglobuquadrina dutertrei (10.1%). The ocean current above the sample location is constantly moving eastward as a part of the NECC. The average currents velocity shows that foraminifera in sample site S-03 with depth 2064 m may originated from up to 1035 kilometers away from its recent location.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 275
Author(s):  
Yang Zhou ◽  
Pengfei Di ◽  
Niu Li ◽  
Fang Chen ◽  
Xin Su ◽  
...  

Many cold seeps and gas hydrate areas have not been discovered beside the Beikan basin in the southern South China Sea (SCS), and their characteristics and histories also remain poorly known. Here we describe authigenic minerals and the carbon and oxygen isotopic composition of planktonic foraminifera Globigerinoides ruber from sediment core 2PC, recovered from the gas hydrate zone of the Nansha Trough, southern SCS, to elucidate its history of dynamic cold seepage. We infer that the occurrence of authigenic gypsum crystals and pyrite concretions, and anomalously negative δ13C values of Globigerinoides ruber, reflect paleo-methane seepage. Two major methane release events were identified, based on remarkable excursions in foraminifera δ13C at depths of 150–250 cm and 350–370 cm. Euhedral gypsum crystals and tubular pyrite concretions co-occur with extremely negative planktonic foraminifera δ13C values, indicating a shift in the sulfate methane transition zone and a change in the methane flux. Our data suggest that authigenic mineral assemblages and δ13C values of planktonic foraminifera provide a valuable tool in elucidating the characteristics of dynamic methane seepage in a marine environment.


1982 ◽  
Vol 17 (3) ◽  
pp. 314-324 ◽  
Author(s):  
Paul Loubere

AbstractThe paleoceanographic–climatic record represented by deep-sea microfossils reflects conditions for only certain times of the year. Also, the relative abundances of microfossil species in deep-sea sediments do not usually reflect only one paleoceanographic variable, such as temperature. Rather, species distributions represent the integration of many factors that control biological production in the oceans. This influences the information on past climates that can be extracted from fossil material. The seasonal limitation is due to the cyclic nature of biological production in the open ocean. Case studies of the sediment record in the Atlantic for two species of planktonic Foraminifera, left-coiling Neogloboquadrina pachyderma (Ehrenberg) and Globigerinoides ruber (d'Orbigny), illustrate seasonal bias in environmental data reported by the relative abundances of species in deep-sea sediments. In addition, the study of G. ruber illustrates the operation of two oceanographic parameters in controlling a species distribution. These examples demonstrate that the environmental signal in the sediments is the result of the interplay of the ecological tolerance of the plankton species with seasonally variable biological and physical properties of the upper ocean.


2020 ◽  
Author(s):  
Kaoru Kubota ◽  
Tsuyoshi Ishikawa ◽  
Kazuya Nagaishi ◽  
Tatsuya Kawai ◽  
Takuya Sagawa ◽  
...  

2020 ◽  
Author(s):  
George H. Scott

AbstractThe distributions of two morphologically similar planktonic foraminifera (Globigerinoides ruber and Trilobus sacculifer) that are major taxa in the mixed layer of the tropical South Pacific Ocean are related to environmental variables (sea surface temperature, chlorophyll-a, nitrate, phosphate, salinity, oxygen) to determine the extent to which their niches overlap. Their distributions in ForCenS, a database of species in seafloor sediment are studied as a proxy for upper ocean data and are analysed as occurrences using MaxEnt, and as relative abundances via non-parametric regression (Random Forests). Their distributions are similar and their co-occurrences are high but relations between their abundances and the environmental variables are complex and non-linear. In the occurrence analysis sea surface temperature is the strongest predictor of niche suitability, followed by chlorophyll-a; environments between 0 – 20° S are mapped as the most suitable for both species. To the contrary, predicted species distributions are strongly differentiated by the abundance analysis. Nitrate and chlorophyll-a are primary variables in the map of predicted relative abundances of Globigerinoides ruber, with maxima in the hyper-oligotrophic zone of the subtropical gyre. In contrast, sea surface temperature and chlorophyll-a are primary variables in the map for Trilobatus sacculifer and predicted maxima are at the margins of the hyper-oligotrophic zone and near the West Pacific Warm Pool. The high relative abundance of Globigerinoides ruber in the hyper-oligotrophic zone is attributed to its close photosymbiotic relation with on-board dinoflagellates; this compensates for the low primary productivity in the zone. It is clearly identified as the best-adapted planktonic foraminifer in this huge marine ‘desert’ and might serve as a useful proxy. The photosymbiotic relation is less apparent in Trilobatus sacculifer which, as in vitro research suggests, primarily depends on particulate nutrition. The study shows the value of abundance over occurrence data for analysing the trophic resources of these zooplankters.


2019 ◽  
Author(s):  
Maxence Guillermic ◽  
Sambuddha Misra ◽  
Robert Eagle ◽  
Alexandra Villa ◽  
Fengming Chang ◽  
...  

Abstract. Boron isotope systematics of planktonic foraminifera from core-top sediments and culture experiments have been studied to investigate the sensitivity of δ11B of their calcite tests to seawater pH. However, our knowledge of the relationship between δ11B and pH remains incomplete for several taxa. Thus, to expand the potential scope of application of this proxy, we report data for 7 different species of planktonic foraminifera from sediment core-tops. We utilize a method for the measurement of small samples of foraminifera and calculate the δ11B-calcite sensitivity to pH for Globigerinoides ruber, Trilobus sacculifer (sacc or w/o sacc), Orbulina universa, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii and Globorotalia tumida, including for unstudied coretops and species. The sensitivity of δ11Bcarbonate to δ11Bborate (eg. Δδ11Bcarbonate/Δδ11Bborate) in core-tops is close to unity. Deep-dwelling species closely follow the core-top calibration for O. universa, which is attributed to respiration-driven microenvironments, likely caused by light limitation for symbiont-bearing foraminifera. These taxa have diverse ecological preferences and are from sites that span a range of oceanographic regimes, including some that are in regions of air-sea equilibrium and others that are out of equilibrium with the atmosphere. Our data support the premise that utilizing boron isotope measurements of multiple species within a sediment core can be utilized to constrain vertical profiles of pH and pCO2 at sites spanning different oceanic regimes, thereby constraining changes in vertical pH gradients and yielding insights into the past behavior of the oceanic carbon pump.


2020 ◽  
Vol 17 (13) ◽  
pp. 3487-3510 ◽  
Author(s):  
Maxence Guillermic ◽  
Sambuddha Misra ◽  
Robert Eagle ◽  
Alexandra Villa ◽  
Fengming Chang ◽  
...  

Abstract. Boron isotope systematics of planktonic foraminifera from core-top sediments and culture experiments have been studied to investigate the sensitivity of δ11B of calcite tests to seawater pH. However, our knowledge of the relationship between δ11B and pH remains incomplete for many taxa. Thus, to expand the potential scope of application of this proxy, we report δ11B data for seven different species of planktonic foraminifera from sediment core tops. We utilize a method for the measurement of small samples of foraminifera and calculate the δ11B-calcite sensitivity to pH for Globigerinoides ruber, Trilobus sacculifer (sacc or without sacc), Orbulina universa, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii, and Globorotalia tumida, including for unstudied core tops and species. These taxa have diverse ecological preferences and are from sites that span a range of oceanographic regimes, including some that are in regions of air–sea equilibrium and others that are out of equilibrium with the atmosphere. The sensitivity of δ11Bcarbonate to δ11Bborate (e.g., Δδ11Bcarbonate∕Δδ11Bborate) in core tops is consistent with previous studies for T. sacculifer and G. ruber and close to unity for N. dutertrei, O. universa, and combined deep-dwelling species. Deep-dwelling species closely follow the core-top calibration for O. universa, which is attributed to respiration-driven microenvironments likely caused by light limitation and/or symbiont–host interactions. Our data support the premise that utilizing boron isotope measurements of multiple species within a sediment core can be utilized to constrain vertical profiles of pH and pCO2 at sites spanning different oceanic regimes, thereby constraining changes in vertical pH gradients and yielding insights into the past behavior of the oceanic carbon pumps.


Sign in / Sign up

Export Citation Format

Share Document