Stochastic optimal operation of a microgrid based on energy hub including a solar-powered compressed air energy storage system and an ice storage conditioner

2021 ◽  
Vol 33 ◽  
pp. 102089
Author(s):  
Mehdi Jalili ◽  
Mostafa Sedighizadeh ◽  
Alireza Sheikhi Fini
2021 ◽  
Vol 9 ◽  
Author(s):  
Qiwei Jia ◽  
Tingxiang Liu ◽  
Xiaotao Chen ◽  
Laijun Chen ◽  
Yang Si ◽  
...  

Improving electricity and heat utilization can speed up China’s decarbonization process in the northwest villages on the Qinghai-Tibet Plateau. In this paper, we proposed an architecture with zero-carbon-emission micro-energy network (ZCE-MEN) to increase the reliability and flexibility of heat and electricity. The advanced adiabatic compressed air energy storage system (AA-CAES) hybrid with solar thermal collector (STC) is defined as hybrid adiabatic compressed air energy storage system (HA-CAES). The ZCE-MEN adopts HA-CAES as the energy hub, which is integrated with power distribution network (PDN) and district heating network (DHN). The STC can greatly improve the efficiency of HA-CAES. Furthermore, it can provide various grades of thermal energy for the residents. The design scheme of HA-CAES firstly considers the thermal dynamics and pressure behavior to assess its heating and power capacities. The optimal operating strategy of ZCE-MEN is modeled as mixed-integer nonlinear programming (MINLP) and converts this problem into a mixed-integer linear programming problem (MILP) that can be solved by CPLEX. The simulation results show that the energy hub based on HA-CAES proposed in this paper can significantly improve ZCE-MEN efficiency and reduce its operation costs. Compared with conventional AA-CAES, the electric to electric (E-E) energy conversion efficiency of the proposed system is increased to 65.61%, and the round trip efficiency of the system is increased to 70.18%. Besides, operating costs have been reduced by 4.78% in comparison with traditional micro-energy network (MEN).


Author(s):  
Ziyi Shao ◽  
Wen Li ◽  
Xing Wang ◽  
Xuehui Zhang ◽  
Haisheng Chen

Abstract As an important energy generation device of the compressed air energy storage (CAES) system, the radial-inflow turbine with shrouded impeller is employed to avoid the leakage flow in the rotor, especially in the high-pressure stages. However, a lack of clarity in the leakage characteristics and their drivers still prevents a systematic approach to the efficient performance and proper design of the shrouded radial turbine. In the present work, the shroud cavity leakage of the shrouded radial turbine has been studied numerically. The physical quantity synergy is innovatively employed to research the internal flow field of the shroud cavity. It is found that the influence of high rotating speed on the seal leakage cannot be neglected, and the average reduced rate of seal leakage is found to be about 9.9% for the designed clearance. The leakage mass flow rate could be reduced by increasing the rotating speed or decreasing the seal clearance. The synergy angle is able to predict the flow resistance in shroud cavity very well. According to the volume-averaged synergy angle in the seal, the dimensionless seal clearance smaller than 1.5% in the shrouded radial turbine is recommended. Compared with the seal clearance in other high-pressure shrouded turbomachines, the current recommended clearance should be within a reasonable field.


Sign in / Sign up

Export Citation Format

Share Document