Melting and solidification characteristics of cylindrical encapsulated phase change materials

2021 ◽  
Vol 43 ◽  
pp. 103104
Author(s):  
Mohammad Yaseen Shaker ◽  
Ahmed A. Sultan ◽  
Emad A. El Negiry ◽  
Ali Radwan
2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2525-2532 ◽  
Author(s):  
Shailendra Kumar ◽  
Kishan Kumar

The present study explores suitability of two phase change materials (PCM) for development of an active thermal storage system for a solar drying kiln by studying their melting and solidification behaviors. A double glass glazing prototype solar kiln was used in the study. The storage system consisted of a water storage tank with PCM placed inside the water in high density polyethylene containers. The water in the tank was heated with help of solar energy using an evacuated tube collector array. The melting and solidification temperature curves of PCM were obtained by charging and discharging the water tank. The study illustrated the utility of the PCM in using the stored thermal energy during their discharge to enhance the temperature inside the kiln. The rate of temperature reduction was found to be higher for paraffin wax as compared to a fatty acid based PCM. The water temperature during the discharge of the PCM showed dependence on the discharge characteristics of each PCM suggesting their suitability in designing active thermal storage systems.


2019 ◽  
Vol 282 ◽  
pp. 02028
Author(s):  
Nedim Hodzic ◽  
Ulrich Pont ◽  
Fahrang Tahmasebi ◽  
Ardeshir Mahdavi

Phase change materials (PCMs) can store and release thermal energy. The energy is stored when the material goes through a solid-to-liquid phase change, and released in the reverse process. Such materials can contribute to the mitigation of overheating in buildings, if their melting and solidification temperatures are in a suitable range. The present contribution entails a computational examination of this potential as relevant to overheating mitigation in typical residential units in the Central European context of Vienna, Austria. Thereby, multiple variations of PCM application (size, thickness, location, and application thickness) under different contextual settings (fenestration and insulation, boundary conditions in terms of weather) were simulated and comparatively evaluated. Results indicate that certain PCM application configurations can significantly influence indoor thermal condition. For instance, PCM elements with larger surface areas displayed a more pronounced effect as compared to bulkier elements with smaller surface areas. Likewise, ceiling-integrated PCM application was found to be more effective that those involving other room surfaces. The results also highlight the importance of rooms ventilation regime if the PCM application potential toward overheating mitigation is to be effectively harvested.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4643
Author(s):  
Roohollah Babaei Mahani ◽  
Hayder I. Mohammed ◽  
Jasim M. Mahdi ◽  
Farhad Alamshahi ◽  
Mohammad Ghalambaz ◽  
...  

Applying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melting and solidification modes. It is found that the melting rate is about 8% faster, and the average temperature is 4 K higher in the corrugated region compared with the smooth region because of the large heat-exchange surface area, which facilitates higher rates of heat transfer into the PCM channel. In addition to the higher performance, a more compact unit can be achieved using the corrugated system. Moreover, applying the half-width PCM channel accelerates the melting rate by eight times compared to the double-width channel. Meanwhile, applying thicker channels provides faster solidification rates. The melting rate is proportional to the airflow temperature. The PCM melts within 274 s when the airflow temperature is 328 K. However, the melting time increases to 460 s for the airflow temperature of 308 K. Moreover, the PCM solidifies in 250 s and 405 s in the cases of 318 K and 328 K airflow temperatures, respectively.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 75 ◽  
Author(s):  
Randeep Singh ◽  
Sadegh Sadeghi ◽  
Bahman Shabani

Low thermal conductivity is the main drawback of phase change materials (PCMs) that is yet to be fully addressed. This paper studies several efficient, cost-effective, and easy-to-use experimental techniques to enhance thermal conductivity of an organic phase change material used for low-temperature thermal energy storage applications. In such applications, the challenges associated with low thermal conductivity of such organic PCMs are even more pronounced. In this investigation, polyethylene glycol (PEG-1000) is used as PCM. To improve the thermal conductivity of the selected PCM, three techniques including addition of carbon powder, and application of aluminum and graphite fins, are utilized. For measurement of thermal conductivity, two experimental methods—including flat and cylindrical configurations—are devised and increments in thermal conductivity are calculated. Melting and solidification processes are analyzed to evaluate melting and solidification zones, and temperature ranges for melting and solidification processes respectively. Furthermore, latent heat of melting is computed under constant values of heat load. Ultimately, specific heat of the PCM in solid state is measured by calorimetry method considering water and methanol as calorimeter fluids. Based on the results, the fin stack can enhance the effective thermal conductivity by more than 40 times with aluminum fins and 33 times with carbon fins. For pure PCM sample, Initiation of melting takes place around 37 °C and continues to above 40 °C depending on input heat load; and solidification temperature range was found to be 33.6–34.9 °C. The investigation will provide a twofold pathway, one to enhance thermal conductivity of PCMs, and secondly ‘relatively easy to set-up’ methods to measure properties of pure and enhanced PCMs.


Sign in / Sign up

Export Citation Format

Share Document