scholarly journals Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant

2012 ◽  
Vol 39 (10) ◽  
pp. 9860-9867 ◽  
Author(s):  
Iñigo Monedero ◽  
Félix Biscarri ◽  
Carlos León ◽  
Juan I. Guerrero ◽  
Rocio González ◽  
...  
Author(s):  
Alexander D. Pisarev

This article studies the implementation of some well-known principles of information work of biological systems in the input unit of the neuroprocessor, including spike coding of information used in models of neural networks of the latest generation.<br> The development of modern neural network IT gives rise to a number of urgent tasks at the junction of several scientific disciplines. One of them is to create a hardware platform&nbsp;— a neuroprocessor for energy-efficient operation of neural networks. Recently, the development of nanotechnology of the main units of the neuroprocessor relies on combined memristor super-large logical and storage matrices. The matrix topology is built on the principle of maximum integration of programmable links between nodes. This article describes a method for implementing biomorphic neural functionality based on programmable links of a highly integrated 3D logic matrix.<br> This paper focuses on the problem of achieving energy efficiency of the hardware used to model neural networks. The main part analyzes the known facts of the principles of information transfer and processing in biological systems from the point of view of their implementation in the input unit of the neuroprocessor. The author deals with the scheme of an electronic neuron implemented based on elements of a 3D logical matrix. A pulsed method of encoding input information is presented, which most realistically reflects the principle of operation of a sensory biological neural system. The model of an electronic neuron for selecting ranges of technological parameters in a real 3D logic matrix scheme is analyzed. The implementation of disjunctively normal forms is shown, using the logic function in the input unit of a neuroprocessor as an example. The results of modeling fragments of electric circuits with memristors of a 3D logical matrix in programming mode are presented.<br> The author concludes that biomorphic pulse coding of standard digital signals allows achieving a high degree of energy efficiency of the logic elements of the neuroprocessor by reducing the number of valve operations. Energy efficiency makes it possible to overcome the thermal limitation of the scalable technology of three-dimensional layout of elements in memristor crossbars.


2016 ◽  
Vol 10 ◽  
pp. 00061
Author(s):  
Andrzej Łączak ◽  
Maria Mrówczyńska ◽  
Anna Bazan – Krzywoszańska ◽  
Marta Skiba

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1753 ◽  
Author(s):  
Hassan El-Khatib ◽  
Dan Popescu ◽  
Loretta Ichim

The main purpose of the study was to develop a high accuracy system able to diagnose skin lesions using deep learning–based methods. We propose a new decision system based on multiple classifiers like neural networks and feature–based methods. Each classifier (method) gives the final decision system a certain weight, depending on the calculated accuracy, helping the system make a better decision. First, we created a neural network (NN) that can differentiate melanoma from benign nevus. The NN architecture is analyzed by evaluating it during the training process. Some biostatistic parameters, such as accuracy, specificity, sensitivity, and Dice coefficient are calculated. Then, we developed three other methods based on convolutional neural networks (CNNs). The CNNs were pre-trained using large ImageNet and Places365 databases. GoogleNet, ResNet-101, and NasNet-Large, were used in the enumeration order. CNN architectures were fine-tuned in order to distinguish the different types of skin lesions using transfer learning. The accuracies of the classifications were determined. The last proposed method uses the classical method of image object detection, more precisely, the one in which some features are extracted from the images, followed by the classification step. In this case, the classification was done by using a support vector machine. Just as in the first method, the sensitivity, specificity, Dice similarity coefficient and accuracy are determined. A comparison of the obtained results from all the methods is then done. As mentioned above, the novelty of this paper is the integration of these methods in a global fusion-based decision system that uses the results obtained by each individual method to establish the fusion weights. The results obtained by carrying out the experiments on two different free databases shows that the proposed system offers higher accuracy results.


2017 ◽  
Vol 7 (2-4) ◽  
pp. 151-160 ◽  
Author(s):  
Delano Mendes de Santana ◽  
Sérgio Ricardo Lourenço ◽  
Douglas Alves Cassiano

Sign in / Sign up

Export Citation Format

Share Document