Influence of the transition of a laminar separation bubble on the downstream evolution of strong adverse pressure gradient turbulent boundary layers

2018 ◽  
Vol 67 ◽  
pp. 70-78 ◽  
Author(s):  
M.P. Simens ◽  
A.G. Gungor
2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Hui Hu ◽  
Zifeng Yang

An experimental study was conducted to characterize the transient behavior of laminar flow separation on a NASA low-speed GA (W)-1 airfoil at the chord Reynolds number of 70,000. In addition to measuring the surface pressure distribution around the airfoil, a high-resolution particle image velocimetry (PIV) system was used to make detailed flow field measurements to quantify the evolution of unsteady flow structures around the airfoil at various angles of attack (AOAs). The surface pressure and PIV measurements clearly revealed that the laminar boundary layer would separate from the airfoil surface, as the adverse pressure gradient over the airfoil upper surface became severe at AOA≥8.0deg. The separated laminar boundary layer was found to rapidly transit to turbulence by generating unsteady Kelvin–Helmholtz vortex structures. After turbulence transition, the separated boundary layer was found to reattach to the airfoil surface as a turbulent boundary layer when the adverse pressure gradient was adequate at AOA<12.0deg, resulting in the formation of a laminar separation bubble on the airfoil. The turbulence transition process of the separated laminar boundary layer was found to be accompanied by a significant increase of Reynolds stress in the flow field. The reattached turbulent boundary layer was much more energetic, thus more capable of advancing against an adverse pressure gradient without flow separation, compared to the laminar boundary layer upstream of the laminar separation bubble. The laminar separation bubble formed on the airfoil upper surface was found to move upstream, approaching the airfoil leading edge as the AOA increased. While the total length of the laminar separation bubble was found to be almost unchanged (∼20% of the airfoil chord length), the laminar portion of the separation bubble was found to be slightly stretched, and the turbulent portion became slightly shorter with the increasing AOA. After the formation of the separation bubble on the airfoil, the increase rate of the airfoil lift coefficient was found to considerably degrade, and the airfoil drag coefficient increased much faster with increasing AOA. The separation bubble was found to burst suddenly, causing airfoil stall, when the adverse pressure gradient became too significant at AOA>12.0deg.


2009 ◽  
Vol 629 ◽  
pp. 263-298 ◽  
Author(s):  
SOURABH S. DIWAN ◽  
O. N. RAMESH

This is an experimental and theoretical study of a laminar separation bubble and the associated linear stability mechanisms. Experiments were performed over a flat plate kept in a wind tunnel, with an imposed pressure gradient typical of an aerofoil that would involve a laminar separation bubble. The separation bubble was characterized by measurement of surface-pressure distribution and streamwise velocity using hot-wire anemometry. Single component hot-wire anemometry was also used for a detailed study of the transition dynamics. It was found that the so-called dead-air region in the front portion of the bubble corresponded to a region of small disturbance amplitudes, with the amplitude reaching a maximum value close to the reattachment point. An exponential growth rate of the disturbance was seen in the region upstream of the mean maximum height of the bubble, and this was indicative of a linear instability mechanism at work. An infinitesimal disturbance was impulsively introduced into the boundary layer upstream of separation location, and the wave packet was tracked (in an ensemble-averaged sense) while it was getting advected downstream. The disturbance was found to be convective in nature. Linear stability analyses (both the Orr–Sommerfeld and Rayleigh calculations) were performed for mean velocity profiles, starting from an attached adverse-pressure-gradient boundary layer all the way up to the front portion of the separation-bubble region (i.e. up to the end of the dead-air region in which linear evolution of the disturbance could be expected). The conclusion from the present work is that the primary instability mechanism in a separation bubble is inflectional in nature, and its origin can be traced back to upstream of the separation location. In other words, the inviscid inflectional instability of the separated shear layer should be logically seen as an extension of the instability of the upstream attached adverse-pressure-gradient boundary layer. This modifies the traditional view that pegs the origin of the instability in a separation bubble to the detached shear layer outside the bubble, with its associated Kelvin–Helmholtz mechanism. We contend that only when the separated shear layer has moved considerably away from the wall (and this happens near the maximum-height location of the mean bubble), a description by the Kelvin–Helmholtz instability paradigm, with its associated scaling principles, could become relevant. We also propose a new scaling for the most amplified frequency for a wall-bounded shear layer in terms of the inflection-point height and the vorticity thickness and show it to be universal.


1975 ◽  
Vol 70 (3) ◽  
pp. 573-593 ◽  
Author(s):  
W. H. Schofield

The response of turbulent boundary layers to sudden changes in surface roughness under adverse-pressure-gradient conditions has been studied experimentally. The roughness used was in the ‘d’ type array of Perry, Schofield & Joubert (1969). Two cases of a rough-to-smooth change in surface roughness were considered in the same arbitrary adverse pressure gradient. The two cases differed in the distance of the surface discontinuity from the leading edge and gave two sets of flow conditions for the establishment and growth of the internal layer which develops downstream from a change in surface roughness. These conditions were in turn different from those in the zero-pressure-gradient experiments of Antonia & Luxton. The results suggest that the growth of the new internal layer depends solely on the new conditions at the wall and scales with the local roughness length of that wall. Mean velocity profiles in the region after the step change in roughness were accurately described by Coles’ law of the wall-law of the wake combination, which contrasts with the zero-pressure-gradient results of Antonia & Luxton. The skin-friction coefficient after the step change in roughness did not overshoot the equilibrium distribution but made a slow adjustment downstream of the step. Comparisons of mean profiles indicate that similar defect profile shapes are produced in layers with arbitrary adverse pressure gradients at positions where the values of Clauser's equilibrium parameter β (= δ*τ−10dp/dx) are similar, provided that the pressure-gradient history and local values of the pressure gradient are also similar.


2013 ◽  
Vol 715 ◽  
pp. 477-498 ◽  
Author(s):  
Zambri Harun ◽  
Jason P. Monty ◽  
Romain Mathis ◽  
Ivan Marusic

AbstractResearch into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.


Sign in / Sign up

Export Citation Format

Share Document