gradient variation
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
pp. 1-35
Author(s):  
Hongli Ji ◽  
Xiaoning Zhao ◽  
Ning Wang ◽  
Wei Huang ◽  
Jinhao Qiu ◽  
...  

Abstract A previously proposed planar axisymmetric dynamic vibration absorber (DVA), with embedded acoustic black hole (ABH) features, has been shown to suffer from the very selective coupling with the host structure, thus compromising its vibration reduction performance. To tackle the problem, an eccentric ABH-based circular DVA whose thickness profile is tailored according to a circumferential gradient variation is proposed in this paper. This new configuration preserves the ABH profile in the radial direction alongside a continuous variation along the circumferential direction and breaks the axisymmetry of the original DVA design at the same time. While the former permits the ABH features to fully play out in a continuous manner, the later entails a more effective coupling with the host structure. These salient properties have been demonstrated and confirmed both numerically and experimentally by examining a benchmark plate structure. For analyses, a coupling model embracing the host structure and the add-on DVAs is established which allows the calculation of the coupling coefficient, a vital quantity to guide the DVA design. Studies demonstrate the advantages of the proposed DVA over existing designs for the same given mass. The enriched structural coupling and the enhanced modal damping, arising from the eccentric and circumferentially graded ABH design, are shown to be the origin of such improvement. All in all, the physical process underpinning the dynamic absorber principle and waveguide absorber from the host structures is simultaneously consolidated, thus leading to superior broadband structural vibration suppression.


2021 ◽  
Vol 26 (4) ◽  
pp. 192-205
Author(s):  
Pooja Rani ◽  
Kuldip Singh

Abstract In this study, a general analysis of one dimensional steady-state thermal stresses of a functionally graded hollow spherical vessel with spherical isotropy and spherically transversely isotropy is presented with material properties of arbitrary radial non-homogeneity. The material properties may arbitrarily vary as continuous or piecewise functions. The boundary value problem associated with a thermo-elastic problem is converted to an integral equation. Radial and tangential thermal stress components distribution can be determined numerically by solving the resulting equation. The influence of the gradient variation of the material properties on the thermal stresses is investigated and the numerical results are presented graphically.


Author(s):  
Jianshi Fang ◽  
Bo Yin ◽  
Xiaopeng Zhang ◽  
Bin Yang

The free vibration of rotating functionally graded nanobeams under different boundary conditions is studied based on nonlocal elasticity theory within the framework of Euler-Bernoulli and Timoshenko beam theories. The thickness-wise material gradient variation of the nanobeam is considered. By introducing a second-order axial shortening term into the displacement field, the governing equations of motion of the present new nonlocal model of rotating nanobeams are derived by the Hamilton’s principle. The nonlocal differential equations are solved through the Galerkin method. The present nonlocal models are validated through the convergence and comparison studies. Numerical results are presented to investigate the influences of the nonlocal parameter, angular velocity, material gradient variation together with slenderness ratio on the vibration of rotating FG nanobeams with different boundary conditions. Totally different from stationary nanobeams, the rotating nanobeams with relatively high angular velocity could produce larger fundamental frequencies than local counterparts. Additionally, the axial stretching-transverse bending coupled vibration is perfectly shown through the frequency loci veering and modal conversion.


2021 ◽  
Author(s):  
Thomas Caignard ◽  
Antoine Kremer ◽  
Xavier Bouteiller ◽  
Julien Parmentier ◽  
Jean‐Marc Louvet ◽  
...  

Alpine Botany ◽  
2021 ◽  
Vol 131 (1) ◽  
pp. 117-124
Author(s):  
Piotr Kiełtyk

AbstractThis study examined the morphological variation in Senecio subalpinus W.D.J. Koch. (Asteraceae) along a 950-m elevation gradient in the Tatra Mountains, Central Europe, with emphasis on floral allocation patterns. Fifteen morphological traits were measured in 200 plants collected in the field from 20 sites then the findings were modelled by elevation using linear mixed-effects models. Plant aboveground biomass and height decreased steadily with increasing elevation; however, the most distinctive feature was the elevational shift in floral allocation patterns. Low-elevation plants had greater numbers of smaller flower heads with a lower overall number of flowers, while high-elevation plants had smaller numbers of bigger flower heads and a greater overall number of flowers. Accordingly, the mean individual flower mass increased significantly with increasing elevation. Interestingly, the width of the outer ligulate flowers also increased considerably with increasing elevation, increasing the fill of the overall circumference of the flower head. Results of this study confirmed that elevation is an important ecological gradient driving variation in vegetative and floral traits of S. subalpinus. Possible causes of the observed variations are subsequently discussed, including the varying effects of both abiotic and biotic factors with elevation gradients.


2020 ◽  
Vol 43 (2) ◽  
pp. 271-278
Author(s):  
Weiner Gustavo Silva ◽  
Heraldo Nunes Pitanga ◽  
Taciano Oliveira Silva ◽  
Sérgio Leandro Scher Dias Neto ◽  
Dario Cardoso Lima ◽  
...  

2020 ◽  
Vol 10 (13) ◽  
pp. 6688-6701
Author(s):  
Brandon M. Quinby ◽  
Mark C. Belk ◽  
J. Curtis Creighton

Sign in / Sign up

Export Citation Format

Share Document