A rigorous homogenization method for the determination of the overall ultimate strength of periodic discrete media and an application to general hexagonal lattices of beams

2006 ◽  
Vol 25 (1) ◽  
pp. 72-97 ◽  
Author(s):  
Céline Florence ◽  
Karam Sab
1976 ◽  
Vol 3 (4) ◽  
pp. 479-483
Author(s):  
Maher K. Tadros

The object of this paper is to present charts for the ultimate strength design of L-sections subjected to combined normal force and bending. The method of derivation of these charts is briefly described. It is general and applicable to other odd-shaped sections. It also conforms to the basic assumptions adopted in the CSA Standard A 23.3-1973. The charts can be used either for the determination of the dimensions of the section or for the check of its capacity.


2021 ◽  
Vol 0 (9) ◽  
pp. 17-21
Author(s):  
O. A. Dvoryankin ◽  
◽  
N. I. Baurova ◽  

Analysis of 3D-printing methods used in the molding production to manufacture master-models has been carried out. The technology was selected, which allowed one to make high-precision parts, combining the molding and the 3D-printing. Factors effecting on the quality of 3D-models printed by this technology were analyzed. Experimental studied for determination of the printing parameter influence (layer thickness, filling percentage, printing velocity) on ultimate strength of specimens made of ABS-plastic were carried out.


2020 ◽  
Vol 51 (6) ◽  
pp. 477-479
Author(s):  
S. M. Shebanov ◽  
I. K. Novikov ◽  
I. A. Gerasimov

Author(s):  
Thomas Lindemann ◽  
Patrick Kaeding ◽  
Eldor Backhaus

The Finite Element Method (FEM) is a feasible tool to perform progressive collapse analyses of large structural systems. Despite enormous developments in finite element formulations and computer technologies the results of structural analyses should be validated against experimental results. In this paper the collapse behaviour of two identical box girder specimens is determined experimentally for the load case of pure longitudinal bending. The specimens are composed of stiffened plate panels and connected at either ends to a loading structure. Within a 4-point bending test a constant bending moment is applied to each specimen to determine the collapse behaviour even in the post-ultimate strength range. The results of the experimental determination of the ultimate strength are presented for the box girder specimens. To simulate the collapse behaviour a finite element model is used and validated against experimental results.


2004 ◽  
Vol 2004 (1) ◽  
pp. 169-177
Author(s):  
Hermann Haken

Elementary excitations (electrons, holes, polaritons, excitons, plasmons, spin waves, etc.) on discrete substrates (e.g., polymer chains, surfaces, and lattices) may move coherently as quantum waves (e.g., Bloch waves), but also incoherently (“hopping”) and may lose their phases due to their interaction with their substrate, for example, lattice vibrations. In the frame of Heisenberg equations for projection operators, these latter effects are often phenomenologically taken into account, which violates quantum mechanical consistency, however. To restore it, quantum mechanical fluctuating forces (noise sources) must be introduced, whose properties can be determined by a general theorem. With increasing miniaturization, in the nanotechnology of logical devices (including quantum computers) that use interacting elementary excitations, such fluctuations become important. This requires the determination of quantum noise sources in composite quantum systems. This is the main objective of my paper, dedicated to the memory of Ilya Prigogine.


Sign in / Sign up

Export Citation Format

Share Document