scholarly journals The steady state partial slip problem for half plane contacts subject to a constant normal load using glide dislocations

2020 ◽  
Vol 79 ◽  
pp. 103868 ◽  
Author(s):  
H. Andresen ◽  
D.A. Hills ◽  
M.R. Moore
2020 ◽  
pp. 108128652096283
Author(s):  
İ Çömez ◽  
Y Alinia ◽  
MA Güler ◽  
S El-Borgi

In this paper, the nonlinear partial slip contact problem between a monoclinic half plane and a rigid punch of an arbitrary profile subjected to a normal load is considered. Applying Fourier integral transform and the appropriate boundary conditions, the mixed-boundary value problem is reduced to a set of two coupled singular integral equations, with the unknowns being the contact stresses under the punch in addition to the stick zone size. The Gauss–Chebyshev discretization method is used to convert the singular integral equations into a set of nonlinear algebraic equations, which are solved with a suitable iterative algorithm to yield the lengths of the stick zone in addition to the contact pressures. Following a validation section, an extensive parametric study is performed to illustrate the effects of material anisotropy on the contact stresses and length of the stick zone for typical monoclinic fibrous composite materials.


2003 ◽  
Vol 38 (4) ◽  
pp. 329-338 ◽  
Author(s):  
R Saez ◽  
A Mugadu ◽  
J Fuenmayor ◽  
D. A Hills

The phenomenon of frictional shakedown is investigated by considering a complete contact configuration for which a stable partial slip regime exists; a tilted square-ended rigid punch is pressed against an incompressible half-plane by an offset constant normal load and subject to an oscillatory shearing force. The analysis shows that analogies might be drawn with conventional plasticity nomenclature and that, under certain conditions, Melan's lower bound theorem of plastic shakedown may be invoked, leading to the elimination of steady state slip. The implications of these results to fretting contacts are discussed.


Author(s):  
Nils Cwiekala ◽  
David A Hills

The state of stress present in an elastic half-plane contact problem, where one or both bodies is subject to remote tension has been investigated, both for conditions of full stick and partial slip. The state of stress present near the contact edges is studied for different loading scenarios in an asymptotic form. This is of practical relevance to the study of contacts experiencing fretting fatigue, and enables the environment in which cracks nucleate to be specified.


Author(s):  
N Banerjee ◽  
D Dini ◽  
D A Hills

This paper provides a set of ‘maps’ showing the response of three example frictional complete contacts (with edge angle of 60°, 90°, and 120°) subject to a constant normal load and the subsequent application of cyclic shear and bulk tension, the latter present in only one body. The maps define the region of full adhesion, the nature of violations, and conditions under which they arise.


2021 ◽  
pp. 1-12
Author(s):  
Vimal Edachery ◽  
V. Swamybabu ◽  
Gurupatham Anand ◽  
Paramasamy Manikandan ◽  
Satish V. Kailas

Abstract Surface topography is a critical parameter that can influence friction and wear in engineering applications. In this work, the influence of surface topography directionality on seizure and scuffing initiation during tribological interactions is explored. For this, unidirectional sliding wear experiments were carried out in immersed lubrication conditions for various normal loads. The tribological interactions were studied using EN31-60 HRC flats and SAE52100-60HRC pins in a sphere on flat configuration. The results show that, in some cases, the sliding interactions in the initial cycles lead to a high friction coefficient of up to ∼0.68 in lubricated conditions, which was termed as ‘peak friction’, and this was accompanied by scuffing. The existence of peak friction was found to be dependent on surface topography directionality, especially when the directionality in topography was parallel to the sliding direction. Continuous ratchetting was found to be the cause of peak friction which was accompanied by seizure and scuffing. When the topography directionality was perpendicular or independent of sliding direction, elastic shakedown occurred at earlier cycles and prevented peak friction initiation, scuffing and also facilitated for higher steady-state friction values.


Sign in / Sign up

Export Citation Format

Share Document