A WHOLE GENOME SEQUENCING STUDY IDENTIFIES A RARE VARIANT IN ANK3 THAT MAY CONTRIBUTE TO BIPOLAR DISORDER

2019 ◽  
Vol 29 ◽  
pp. S901
Author(s):  
Joanna Biernacka ◽  
Gregory Jenkins ◽  
Shannon McDonnell ◽  
Anthony Batzler ◽  
Hugues Sicotte ◽  
...  
2018 ◽  
Author(s):  
Zagaa Odgerel ◽  
Nora Hernandez ◽  
Jemin Park ◽  
Ruth Ottman ◽  
Elan D. Louis ◽  
...  

ABSTRACTEssential tremor (ET) is one of the most common movement disorders. The etiology of ET remains largely unexplained. Whole genome sequencing (WGS) is likely to be of value in understanding a large proportion of ET with Mendelian and complex disease inheritance patterns. In ET families with Mendelian inheritance patterns, WGS may lead to gene identification where WES analysis failed to identify the causative variant due to incomplete coverage of the entire coding region of the genome. Alternatively, in ET families with complex disease inheritance patterns with gene x gene and gene x environment interactions enrichment of functional rare coding and non-coding variants may explain the heritability of ET. We performed WGS in eight ET families (n=40 individuals) enrolled in the Family Study of Essential Tremor. The analysis included filtering WGS data based on allele frequency in population databases, rare variant classification and association testing using the Mixed-Model Kernel Based Adaptive Cluster (MM-KBAC) test and prioritization of candidate genes identified within families using phenolyzer. WGS analysis identified candidate genes for ET in 5/8 (62.5%) of the families analyzed. WES analysis in a subset of these families in our previously published study failed to identify candidate genes. In one family, we identified a deleterious and damaging variant (c.1367G>A, p.(Arg456Gln)) in the candidate gene, CACNA1G, which encodes the pore forming subunit of T-type Ca(2+) channels, CaV3.1, and is expressed in various motor pathways and has been previously implicated in neuronal autorhythmicity and ET. Other candidate genes identified include SLIT3 (family D), which encodes an axon guidance molecule and in three families, phenolyzer prioritized genes that are associated with hereditary neuropathies (family A, KARS, family B, KIF5A and family F, NTRK1). This work has identified candidate genes and pathways for ET that can now be prioritized for functional studies.


2019 ◽  
Author(s):  
Zilin Li ◽  
Xihao Li ◽  
Yaowu Liu ◽  
Jincheng Shen ◽  
Han Chen ◽  
...  

AbstractWhole genome sequencing (WGS) studies are being widely conducted to identify rare variants associated with human diseases and disease-related traits. Classical single-marker association analyses for rare variants have limited power, and variant-set based analyses are commonly used to analyze rare variants. However, existing variant-set based approaches need to pre-specify genetic regions for analysis, and hence are not directly applicable to WGS data due to the large number of intergenic and intron regions that consist of a massive number of non-coding variants. The commonly used sliding window method requires pre-specifying fixed window sizes, which are often unknown as a priori, are difficult to specify in practice and are subject to limitations given genetic association region sizes are likely to vary across the genome and phenotypes. We propose a computationally-efficient and dynamic scan statistic method (Scan the Genome (SCANG)) for analyzing WGS data that flexibly detects the sizes and the locations of rare-variants association regions without the need of specifying a prior fixed window size. The proposed method controls the genome-wise type I error rate and accounts for the linkage disequilibrium among genetic variants. It allows the detected rare variants association region sizes to vary across the genome. Through extensive simulated studies that consider a wide variety of scenarios, we show that SCANG substantially outperforms several alternative rare-variant association detection methods while controlling for the genome-wise type I error rates. We illustrate SCANG by analyzing the WGS lipids data from the Atherosclerosis Risk in Communities (ARIC) study.


PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0220512 ◽  
Author(s):  
Zagaa Odgerel ◽  
Shilpa Sonti ◽  
Nora Hernandez ◽  
Jemin Park ◽  
Ruth Ottman ◽  
...  

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Masao Nagasaki ◽  
◽  
Jun Yasuda ◽  
Fumiki Katsuoka ◽  
Naoki Nariai ◽  
...  

2020 ◽  
Author(s):  
Prisca K. Thami ◽  
Wonderful Choga ◽  
Delesa D. Mulisa ◽  
Collet Dandara ◽  
Andrey K. Shevchenko ◽  
...  

ABSTRACTDespite the high burden of HIV-1 in Botswana, the population of Botswana is significantly underrepresentation in host genetics studies of HIV-1. Furthermore, the bulk of previous genomics studies evaluated common human genetic variations, however, there is increasing evidence of the influence of rare variants in the outcome of diseases which may be uncovered by comprehensive complete and deep genome sequencing. This research aimed to evaluate the role of rare-variants in susceptibility to HIV-1 and progression through whole genome sequencing. Whole genome sequences (WGS) of 265 HIV-1 positive and 125 were HIV-1 negative unrelated individuals from Botswana were mapped to the human reference genome GRCh38. Population joint variant calling was performed using Genome Analysis Tool Kit (GATK) and BCFTools. Cumulative effects of rare variant sets on susceptibility to HIV-1 and progression (CD4+ T-cell decline) were determined with optimized Sequence Kernel Association Test (SKAT-O). In silico functional analysis of the prioritized variants was performed through gene-set enrichment using databases in GeneMANIA and Enrichr. Novel rare-variants within the ANKRD39 (8.48 × 10−8), LOC105378523 (7.45 × 10−7) and GTF3C3 (1.36 × 10−6) genes were significantly associated with HIV-1 progression. Functional analysis revealed that these genes are involved in viral translation and transcription. These findings highlight the significance of whole genome sequencing in pinpointing rare-variants of clinical relevance. The research contributes towards a deeper understanding of the host genetics HIV-1 and offers promise of population specific interventions against HIV-1.


2017 ◽  
Vol 27 ◽  
pp. S384
Author(s):  
Fernando Goes ◽  
Mehdi Pirooznia ◽  
Martin Tehan ◽  
Paula Wolyniec ◽  
John McGrath ◽  
...  

2019 ◽  
Vol 29 ◽  
pp. S827-S828
Author(s):  
Fernando Goes ◽  
Mehdi Pirooznia ◽  
Peter Zandi ◽  
Martin Tehan ◽  
Ann Pulver

Sign in / Sign up

Export Citation Format

Share Document