dynamic scan
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 698
Author(s):  
Wen-Ling Hsu ◽  
Shu-Min Chang ◽  
Chin-Chuan Chang

A camera-based method using Technetium-99m diethylenetriaminepentaacetic acid (Tc-99m DTPA) is commonly used to calculate glomerular filtration rate (GFR), especially, as it can easily calculate split renal function. Renal depth is the main factor affecting the measurement of GFR accuracy. This study aimed to compare the difference of renal depths between three formulae and a CT scan, and, additionally, to calculate the GFRs by four methods. We retrospectively reviewed the medical records of patients receiving a renal dynamic scan. All patients underwent a laboratory test within one month, and a computed tomography (CT) scan within two months, before or after the renal dynamic scan. The GFRs were calculated by employing a renal dynamic scan using renal depth measured in three formulae (Tonnesen’s, Itoh K’s, and Taylor’s), and a CT scan. The renal depths measured by the above four methods were compared, and the GFRs were compared to the modified estimated GFR (eGFR). Fifty-one patients were enrolled in the study. The mean modified eGFR was 60.5 ± 42.7 mL/min. The mean GFRs calculated by three formulae and CT were 45.3 ± 23.3, 54.7 ± 27.5, 56.5 ± 26.3, and 63.7 ± 30.0, respectively. All of them correlated well with the modified eGFR (r = 0.87, 0.87, 0.87, and 0.84, respectively). The Bland–Altman plot revealed good consistency between the calculated GFR by Tonnesen’s and the modified eGFR. The renal depths measured using the three formulae were smaller than those measured using the CT scan, and the right renal depth was always larger than the left. In patients with modified eGFR > 60 mL/min, the GFR calculated by CT was the closest to the modified eGFR. The Renal depth measured by CT scan is deeper than that using formula, and it influences the GFR calculated by Gate’s method. The GFR calculated by CT is more closely related to modified eGFR when modified eGFR > 60 mL/min.


2021 ◽  
Author(s):  
Zixiang Chen ◽  
Zhaoping Cheng ◽  
Yanhua Duan ◽  
Fengyun Gu ◽  
Ying Wang ◽  
...  

Abstract Background: Total-body dynamic PET (dPET) imaging using 18F-fluorodeoxyglucose (18F-FDG) has received widespread attention in clinical oncology. However, the conventionally required scan duration of approximately one hour seriously limits the application and promotion of this imaging technique. In this study, using Patlak analysis-based Ki parametric imaging as the evaluation standard, we investigated the possibility and feasibility of shortening the total-body dynamic scan duration to 30 mins post-injection (PI) with the help of a novel Patlak data processing algorithm.Methods: Total-body dPET images acquired by uEXPLORER (United Imaging Healthcare Inc.) using 18F-FDG of 15 patients with different types of tumors were analyzed in this study. Dynamic images were reconstructed into 25 frames with a specific temporal dividing protocol for the scan data acquired one hour PI. Patlak analysis-based Ki parametric imaging was carried out based on the imaging data corresponding to the first 30 mins PI, during which a Patlak data processing method based on third-order Hermite interpolation (THI) was applied. The resulting Ki images and standard Ki images were compared in terms of visual imaging effect and Ki estimation accuracy to evaluate the performance of the proposed data processing algorithm for parametric imaging with dPET with a shortened scan duration.Results: With the help of Patlak data processing, acceptable Ki parametric images were obtained from dPET data acquired with a shortened scan duration. Compared to Ki images obtained from unprocessed Patlak data, the resulting images from the proposed method contained less image noise, leading to remarkably improved imaging quality. Moreover, box plot analysis showed that that 30-min Ki images obtained from processed Patlak data have higher accuracy regarding tumor lesion Ki values.Conclusion: Acceptable Ki parametric images can be acquired from dynamic imaging data corresponding to the first 30 mins PI. Patlak data processing can help achieve higher Ki imaging quality and higher accuracy regarding tumor lesion Ki values. Clinically, it is possible to shorten the dynamic scan duration of 18F-FDG PET to 30 mins to facilitate the usage of such imaging techniques on uEXPLORER scanners.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. H. Vrist ◽  
J. N. Bech ◽  
T. G. Lauridsen ◽  
C. A. Fynbo ◽  
J. Theil

Abstract Purpose The purpose of this study is to compare dynamic and static whole-body (WB) [18F]NaF PET/CT scan methods used for analysis of bone plasma clearance in patients with chronic kidney disease-mineral and bone disorder (CKD-MBD). Methods Seventeen patients with CKD-MBD underwent a 60-min dynamic scan followed by a 30-min static WB scan. Tracer kinetics in four thoracic vertebrae were analysed using nonlinear regression and Patlak analysis using image-derived arterial input functions. The static WB scan was analysed using a simplified Patlak method requiring only a single data point in combination with a fixed y-intercept value (V0), both obtained using a semi-population function. The semi-population function was constructed by combining a previously derived population input function in combination with data from venous blood samples. Static WB scan analysis data, obtained from the semi-population input functions, was compared with paired data obtained using dynamic input functions. Results Bone plasma clearance (Ki) from Patlak analyses correlated well with nonlinear regression analysis, but Ki results using Patlak analysis were lower than Ki results using nonlinear regression analysis. However, no significant difference was found between Ki obtained by static WB scans and Ki obtained by dynamic scans using nonlinear regression analysis (p = 0.29). Conclusion Bone plasma clearance measured from static WB scans correlates with clearance data measured by dynamic analysis. Static [18F]NaF PET/CT scans can be applied in future studies to measure Ki in patients with CKD-MBD, but the results should not be compared uncritically with results obtained by dynamic scan analysis.


Tomography ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 623-635
Author(s):  
Tanuj Puri ◽  
Musib M. Siddique ◽  
Michelle L. Frost ◽  
Amelia E. B. Moore ◽  
Glen M. Blake

[18F]NaF PET measurements of bone metabolic flux (Ki) are conventionally obtained with 60-min dynamic scans analysed using the Hawkins model. However, long scan times make this method expensive and uncomfortable for subjects. Therefore, we evaluated and compared measurements of Ki with shorter scan times analysed with fixed values of the Hawkins model rate constants. The scans were acquired in a trial in 30 postmenopausal women, half treated with teriparatide (TPT) and half untreated. Sixty-minute PET-CT scans of both hips were acquired at baseline and week 12 after injection with 180 MBq [18F]NaF. Scans were analysed using the Hawkins model by fitting bone time–activity curves at seven volumes of interest (VOIs) with a semi-population arterial input function. The model was re-run with fixed rate-constants for dynamic scan times from 0–12 min increasing in 4-min steps up to 0–60 min. Using the Hawkins model with fixed rate-constants, Ki measurements with statistical power equivalent or superior to conventionally analysed 60-min dynamic scans were obtained with scan times as short as 12 min.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6441
Author(s):  
Jianjun Sun ◽  
Yalin Ding ◽  
Hongwen Zhang ◽  
Guoqin Yuan ◽  
Yuquan Zheng

In order to enable the aerial photoelectric equipment to realize wide-area reconnaissance and target surveillance at the same time, a dual-band dynamic scan and stare imaging system is proposed in this paper. The imaging system performs scanning and pointing through a two-axis gimbal, compensating the image motion caused by the aircraft and gimbal angular velocity and the aircraft liner velocity using two two-axis fast steering mirrors (FSMs). The composition and working principle of the dynamic scan and stare imaging system, the detailed scheme of the two-axis FSM and the image motion compensation (IMC) algorithm are introduced. Both the structure and the mirror of the FSM adopt aluminum alloys, and the flexible support structure is designed based on four cross-axis flexural hinges. The Root-Mean-Square (RMS) error of the mirror reaches 15.8 nm and the total weight of the FSM assembly is 510 g. The IMC rate equations of the two-axis FSM are established based on the coordinate transformation method. The effectiveness of the FSM and IMC algorithm is verified by the dynamic imaging test in the laboratory and flight test.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Joyce van Sluis ◽  
Maqsood Yaqub ◽  
Adrienne H. Brouwers ◽  
Rudi A. J. O. Dierckx ◽  
Walter Noordzij ◽  
...  

Abstract Whole-body Patlak images can be obtained from an acquisition of first 6 min of dynamic imaging over the heart to obtain the arterial input function (IF), followed by multiple whole-body sweeps up to 60 min pi. The use of a population-averaged IF (PIF) could exclude the first dynamic scan and minimize whole-body sweeps to 30–60 min pi. Here, the effects of (incorrect) PIFs on the accuracy of the proposed Patlak method were assessed. In addition, the extent of mitigating these biases through rescaling of the PIF to image-derived IF values at 30–60 min pi was evaluated. Methods Using a representative IF and rate constants from the literature, various tumour time-activity curves (TACs) were simulated. Variations included multiplication of the IF with a positive and negative gradual linear bias over 60 min of 5, 10, 15, 20, and 25% (generating TACs using an IF different from the PIF); use of rate constants (K1, k3, and both K1 and k2) multiplied by 2, 1.5, and 0.75; and addition of noise (μ = 0 and σ = 5, 10 and 15%). Subsequent Patlak analysis using the original IF (representing the PIF) was used to obtain the influx constant (Ki) for the differently simulated TACs. Next, the PIF was scaled towards the (simulated) IF value using the 30–60-min pi time interval, simulating scaling of the PIF to image-derived values. Influence of variabilities in IF and rate constants, and rescaling the PIF on bias in Ki was evaluated. Results Percentage bias in Ki observed using simulated modified IFs varied from − 16 to 16% depending on the simulated amplitude and direction of the IF modifications. Subsequent scaling of the PIF reduced these Ki biases in most cases (287 out of 290) to < 5%. Conclusions Simulations suggest that scaling of a (possibly incorrect) PIF to IF values seen in whole-body dynamic imaging from 30 to 60 min pi can provide accurate Ki estimates. Consequently, dynamic Patlak imaging protocols may be performed for 30–60 min pi making whole-body Patlak imaging clinically feasible.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Lisa Schwetlick ◽  
Lars Oliver Martin Rothkegel ◽  
Hans Arne Trukenbrod ◽  
Ralf Engbert

AbstractHow we perceive a visual scene depends critically on the selection of gaze positions. For this selection process, visual attention is known to play a key role in two ways. First, image-features attract visual attention, a fact that is captured well by time-independent fixation models. Second, millisecond-level attentional dynamics around the time of saccade drives our gaze from one position to the next. These two related research areas on attention are typically perceived as separate, both theoretically and experimentally. Here we link the two research areas by demonstrating that perisaccadic attentional dynamics improve predictions on scan path statistics. In a mathematical model, we integrated perisaccadic covert attention with dynamic scan path generation. Our model reproduces saccade amplitude distributions, angular statistics, intersaccadic turning angles, and their impact on fixation durations as well as inter-individual differences using Bayesian inference. Therefore, our result lend support to the relevance of perisaccadic attention to gaze statistics.


2020 ◽  
Author(s):  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document