Even low doses of d-serine can induce high anxiety in catatonic GC rats and in PM rats with audiogenic epilepsy

2019 ◽  
Vol 29 ◽  
pp. S557-S558
Author(s):  
O. Prokudina ◽  
T. Alekhina
Author(s):  
D.E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
J. Stevenson ◽  
S. Black ◽  
...  

Spermatogonial stem-cell survival after irradiation injury has been studied in rodents by histological counts of surviving cells. Many studies, including previous work from our laboratory, show that the spermatogonial population demonstrates a heterogeneous response to irradiation. The spermatogonia increase in radio-sensitivity as differentiation proceeds through the sequence As - Apr - A1 - A2 - A3 - A4 - In - B. The stem (As) cell is the most resistant and the B cell is the most sensitive. The purpose of this work is to investigate the response of spermatogonial cell to low doses (less than 10 0 rads) of helium particle irradiation.


Author(s):  
O. M. Faroon ◽  
R. W. Henry ◽  
M. G. Soni ◽  
H. M. Mehendale

Previous work has shown that mirex undergoes photolytic dechlorination to chlordecone (CD) (KeponeR) in the environment. Much work has shown that prior exposure to nontoxic levels of CD causes potentiation of hepatotoxicity and lethality of CCl4, BrCCl3 and other halomethane compounds. Potentiation of bromotrichloromethane hepatotoxicity has been associated with compounds that stimulate the activity of hepatic mixed-function oxidase (MFO). An increase in the metabolism of halomethane by the MFO to a free radical initiates peroxidative decomposition of membranal lipids ending in massive cellular injury. However, not all MFO inducers potentiate BrCCl3 hepatotoxicity. Potentiation by much larger doses of phenobarbital is minimal and th at by a more potent inducer of MFO, mirex, is negligible at low doses. We suggest that the CD and bromotrichloromethane interaction results in a depletion of cellular energy and thereby reducing the cellular ability to undergo mitosis.


2006 ◽  
Vol 48 (09) ◽  
pp. 709 ◽  
Author(s):  
Horacio Plotkin ◽  
Susan Coughlin ◽  
Rose Kreikemeier ◽  
Kathryn Heldt ◽  
Matias Bruzoni ◽  
...  
Keyword(s):  

1984 ◽  
Vol 23 (02) ◽  
pp. 87-91 ◽  
Author(s):  
K. Flemming

SummaryIn the beginning of medical radiology, only the benefit of ionizing radiation was obvious, and radiation was handled and applied generously. After late effects had become known, the radiation exposure was reduced to doses following which no such effects were found. Thus, it was assumed that one could obtain an optimal medical benefit without inducing any hazard. Later, due to experimental findings, hypotheses arose (linear dose-effect response, no time factor) which led to the opinion that even low and lowest radiation doses were relevant for the induction of late effects. A radiation fear grew, which was unintentionally strengthened by radiation protection decrees: even for low doses a radiation risk could be calculated. Therefore, it was believed that there could still exist a radiation hazard, and the radiation benefit remained in question. If, however, all presently known facts are considered, one must conclude that large radiation doses are hazardous and low doses are inefficient, whereas lowest doses have a biopositive effect. Ionizing radiation, therefore, may cause both, hazard as well as benefit. Which of the two effects prevails is determined by the level of dose.


Sign in / Sign up

Export Citation Format

Share Document