Polythiophene silver bromide nanostructure as ultra-sensitive non-enzymatic electrochemical glucose biosensor

2020 ◽  
Vol 138 ◽  
pp. 109959
Author(s):  
Seyyed Alireza Hashemi ◽  
Seyyed Mojtaba Mousavi ◽  
Sonia Bahrani ◽  
Seeram Ramakrishna
2011 ◽  
Vol E94-C (12) ◽  
pp. 1855-1857
Author(s):  
Huihui WANG ◽  
Hitoshi OHNUKI ◽  
Hideaki ENDO ◽  
Mitsuru IZUMI

2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


The Analyst ◽  
2019 ◽  
Vol 144 (6) ◽  
pp. 1960-1967 ◽  
Author(s):  
Chao Chen ◽  
Pengcheng Zhao ◽  
Meijun Ni ◽  
Chunyan Li ◽  
Yixi Xie ◽  
...  

A temperature-induced sensing film consisting of poly(N-vinylcaprolactam) (PVCL), graphene oxide (GO) and glucose oxidase (GOD) was fabricated and used to modify a glassy carbon electrode (GCE).


2021 ◽  
pp. 107870
Author(s):  
Md Faruk Hossain ◽  
Gymama Slaughter
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3757
Author(s):  
Gabriela Valdés-Ramírez ◽  
Laura Galicia

A biosensing membrane base on ferulic acid and glucose oxidase is synthesized onto a carbon paste electrode by electropolymerization via cyclic voltammetry in aqueous media at neutral pH at a single step. The developed biosensors exhibit a linear response from 0.082 to 34 mM glucose concentration, with a coefficient of determination R2 equal to 0.997. The biosensors display a sensitivity of 1.1 μAmM−1 cm−2, a detection limit of 0.025 mM, and 0.082 mM as glucose quantification limit. The studies reveal stable, repeatable, and reproducible biosensors response. The results indicate that the novel poly-ferulic acid membrane synthesized by electropolymerization is a promising method for glucose oxidase immobilization towards the development of glucose biosensors. The developed glucose biosensors exhibit a broader linear glucose response than other polymer-based glucose biosensors.


2021 ◽  
Vol 9 (2) ◽  
pp. 105157 ◽  
Author(s):  
Sheetal Sharma ◽  
Vishal Dutta ◽  
Pankaj Raizada ◽  
Ahmad Hosseini-Bandegharaei ◽  
Vijay Kumar Thakur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document