Camphoric acid as renewable cyclic building block for bio-based UV-curing polyhexylene itaconate

2021 ◽  
pp. 110423
Author(s):  
Rim Ouhichi ◽  
Abdelkader Bougarech ◽  
Marcel Kluge ◽  
Sacha Pérocheau Arnaud ◽  
Souhir Abid ◽  
...  
2003 ◽  
Vol 59 (1) ◽  
pp. 118-131 ◽  
Author(s):  
Choudhury M. Zakaria ◽  
George Ferguson ◽  
Alan J. Lough ◽  
Christopher Glidewell

(1R,3S)-Camphoric acid [(1R,3S)-1,2,2,-trimethylcyclopentane-1,3-dicarboxylic acid, C10H16O4] forms adducts with a range of amines in which the acid component may be the neutral molecule, the mono-anion (C10H15O4)− or the di-anion (C10H14O4)2−. The structures generated by the hard hydrogen bonds take the form of chains in the 1:1 adducts (II) and (III) formed with 4,4′-bipyridyl and 1,2-bis(4-pyridyl)ethane. There are single sheets in the hydrated 1:1 adduct (IV) formed with 1,4-diazabicyclo[2.2.2]octane, and pairwise-interwoven sheets in the 2:1 adduct (V) formed with hexamethylenetetramine. Three-dimensional frameworks are present in the salt-like 1:1 adduct (VI) formed with piperazine and in the hydrated 3:1 adduct (VII) formed with N,N′-dimethylpiperazine. This latter adduct contains both neutral C10H16O4 and anionic (C10H15O4)− units. In (II), (III) and (IV), the chain and sheet substructures are linked by C—H...O hydrogen bonds to form three-dimensional frameworks. The monoclinic polymorph of camphoric acid itself (I) has been reinvestigated.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Amalia Rapakousiou ◽  
Alejandro López-moreno ◽  
Belén Nieto-Ortega ◽  
M. Mar Bernal ◽  
Miguel A. Monclús ◽  
...  

We introduce poly(1,6-pyrene terephthalamide) polymer (PPyrTA) as an aromatic polyamide analogue of poly(p-phenylene terephthalamide) (PPTA), also known as Kevlar®. This work shows that the incorporation of polycyclic aromatic pyrene moieties improves drastically the mechanical properties of the polymeric structure, increasing elastic nanoindentation-determined modulus and hardness by factors of 1.9 and 4.3, respectively. Liquid deprotonated dispersions of PPyrTA nanofibers were used as nanoscale building block for producing large-surface, free-standing polymer macroscopic nanofilms. This 2D assembly leads to further significant improvements in reduced modulus and hardness (more than twice) compared to the starting polymer macroscale fibres, due to a better re-organizational arrangement of the PPyrTA nanofibers in the nanofilms, formed under 2D spatial confinement.


Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


2019 ◽  
Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


Sign in / Sign up

Export Citation Format

Share Document