scholarly journals Ovariectomy worsens visual function after mild optic nerve crush in rodents

2021 ◽  
Vol 202 ◽  
pp. 108333
Author(s):  
Rachael S. Allen ◽  
Amber Douglass ◽  
Harrison Vo ◽  
Andrew J. Feola
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Mira Chamoun ◽  
Elena G. Sergeeva ◽  
Petra Henrich-Noack ◽  
Shaobo Jia ◽  
Lisa Grigartzik ◽  
...  

Enhancing cortical plasticity and brain connectivity may improve residual vision following a visual impairment. Since acetylcholine plays an important role in attention and neuronal plasticity, we explored whether potentiation of the cholinergic transmission has an effect on the visual function restoration. To this end, we evaluated for 4 weeks the effect of the acetylcholinesterase inhibitor donepezil on brightness discrimination, visually evoked potentials, and visual cortex reactivity after a bilateral and partial optic nerve crush in adult rats. Donepezil administration enhanced brightness discrimination capacity after optic nerve crush compared to nontreated animals. The visually evoked activation of the primary visual cortex was not restored, as measured by evoked potentials, but the cortical neuronal activity measured by thallium autometallography was not significantly affected four weeks after the optic nerve crush. Altogether, the results suggest a role of the cholinergic system in postlesion cortical plasticity. This finding agrees with the view that restoration of visual function may involve mechanisms beyond the area of primary damage and opens a new perspective for improving visual rehabilitation in humans.


2017 ◽  
Vol 162 ◽  
pp. 97-103 ◽  
Author(s):  
Zhen Puyang ◽  
Hai-Qing Gong ◽  
Shi-Gang He ◽  
John B. Troy ◽  
Xiaorong Liu ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hong Ryul Ahn ◽  
Kyung-A Kim ◽  
Suk Woo Kang ◽  
Joo Young Lee ◽  
Tae-Jin Kim ◽  
...  

2017 ◽  
Vol 214 (5) ◽  
pp. 1411-1430 ◽  
Author(s):  
Daniel Sun ◽  
Sara Moore ◽  
Tatjana C. Jakobs

Reactive remodeling of optic nerve head astrocytes is consistently observed in glaucoma and other optic nerve injuries. However, it is unknown whether this reactivity is beneficial or harmful for visual function. In this study, we used the Cre recombinase (Cre)–loxP system under regulation of the mouse glial fibrillary acidic protein promoter to knock out the transcription factor signal transducer and activator of transcription 3 (STAT3) from astrocytes and test the effect this has on reactive remodeling, ganglion cell survival, and visual function after experimental glaucoma and nerve crush. After injury, STAT3 knockout mice displayed attenuated astrocyte hypertrophy and reactive remodeling; astrocytes largely maintained their honeycomb organization and glial tubes. These changes were associated with increased loss of ganglion cells and visual function over a 30-day period. Thus, reactive astrocytes play a protective role, preserving visual function. STAT3 signaling is an important mediator of various aspects of the reactive phenotype within optic nerve astrocytes.


Sign in / Sign up

Export Citation Format

Share Document