Dark-reared rd10 mice experience rapid photoreceptor degeneration with short exposure to room-light during in vivo retinal imaging

2021 ◽  
pp. 108913
Author(s):  
Eric Weh ◽  
Kennedi Scott ◽  
Thomas J. Wubben ◽  
Cagri G. Besirli
2016 ◽  
Vol 5 (1) ◽  
pp. e16007-e16007 ◽  
Author(s):  
Adi Schejter Bar-Noam ◽  
Nairouz Farah ◽  
Shy Shoham
Keyword(s):  

2017 ◽  
Vol 8 (4) ◽  
pp. 2261 ◽  
Author(s):  
Hans R. G. W. Verstraete ◽  
Morgan Heisler ◽  
Myeong Jin Ju ◽  
Daniel Wahl ◽  
Laurens Bliek ◽  
...  

2021 ◽  
Author(s):  
Wenjun Shao ◽  
Ji Yi

Three-dimensional (3D) volumetric imaging of the human retina is instrumental to monitor and diagnose blinding conditions. Although coherent retinal imaging is well established by optical coherence tomography, it is still a large void for incoherent volumetric imaging in the human retina. Here, we report confocal oblique scanning laser ophthalmoscopy (CoSLO), to fill that void and harness incoherent optical contrast in 3D. CoSLO uses oblique scanning laser and remote focusing to acquire depth signal in parallel, avoid the lengthy z-stacking, and image a large field of view (FOV). In addition, confocal gating is introduced by a linear sensor array to improve the contrast and resolution. For the first time, we achieved incoherent 3D human retinal imaging with >20° viewing angle within only 5 seconds. The depth resolution is ~45 microns in vivo. We demonstrated label-free incoherent contrast by CoSLO, revealing unique features in the retina. CoSLO will be an important technique for clinical care of retinal conditions and fundamental vision science, by offering unique volumetric incoherent contrasts.


2021 ◽  
Author(s):  
Egidijus Auksorius ◽  
Piotr Wegrzyn ◽  
Ieva Zickiene ◽  
Slawomir Tomczewski ◽  
Karolis Adomavicius ◽  
...  

Author(s):  
Yao Cai ◽  
Jules Scholler ◽  
Kassandra Groux ◽  
Olivier Thouvenin ◽  
Claude Boccara ◽  
...  

Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2404-2412 ◽  
Author(s):  
DC Roy ◽  
JD Griffin ◽  
M Belvin ◽  
WA Blattler ◽  
JM Lambert ◽  
...  

Abstract The use of immunotoxins (IT) to selectively destroy acute myeloid leukemia (AML) cells in vivo or in vitro is complicated by both the antigenic similarity of AML cells to normal progenitor cells and the difficulty of producing a sufficiently toxic conjugate. The monoclonal antibody (MoAb) anti-MY9 is potentially ideal for selective recognition of AML cells because it reacts with an antigen (CD33) found on clonogenic AML cells from greater than 80% of cases and does not react with normal pluripotent stem cells. In this study, we describe an immunotoxin that is selectively active against CD33+ AML cells: Anti- MY9-blocked-Ricin (Anti-MY9-bR), comprised of anti-MY9 conjugated to a modified whole ricin that has its nonspecific binding eliminated by chemical blockage of the galactose binding domains of the B-chain. A limiting dilution assay was used to measure elimination of HL-60 leukemic cells from a 20-fold excess of normal bone marrow cells. Depletion of CD33+ HL-60 cells was found to be dependent on the concentration of Anti-MY9-bR and on the duration of incubation with IT at 37 degrees C. More than 4 logs of these leukemic cells were specifically depleted following short exposure to high concentrations (10(-8) mol/L) of Anti-MY9-bR. Incubation with much lower concentrations of Anti-MY9-bR (10(-10) mol/L), as compatible with in vivo administration, resulted in 2 logs of depletion of HL-60 cells, but 48 to 72 hours of continuous exposure were required. Anti-MY9-bR was also shown to be toxic to primary AML cells, with depletion of greater than 2 logs of clonogenic cells following incubation with Anti- MY9-bR 10(-8) mol/L at 37 degrees C for 5 hours. Activity of Anti-MY9- bR could be blocked by unconjugated Anti-MY9 but not by galactose. As expected, Anti-MY9-bR was toxic to normal colony-forming unit granulocyte-monocyte (CFU-GM), which expresses CD33, in a concentration- and time-dependent manner, and also to burst-forming unit-erythroid and CFU-granulocyte, erythroid, monocyte, megakaryocyte, although to a lesser extent. When compared with anti-MY9 and complement (C′), Anti- MY9-bR could be used in conditions that provided more effective depletion of AML cells with substantially less depletion of normal CFU- GM. Therefore, Anti-MY9-bR may have clinical utility for in vitro purging of AML cells from autologous marrow when used at high IT concentrations for short incubation periods. Much lower concentrations of Anti-MY9-bR that can be maintained for longer periods may be useful for elimination of AML cells in vivo.


2020 ◽  
Vol 19 (10) ◽  
pp. 1619-1631
Author(s):  
Elez D. Vainer ◽  
Juliane Kania-Almog ◽  
Ghadeer Zatara ◽  
Yishai Levin ◽  
Gilad W. Vainer

Using a simple, environment friendly proteome extraction (TOP), we were able to optimize the analysis of clinical samples. Using our TOP method we analyzed a clinical cohort of microsatellite stable (MSS) and unstable (MSI-H) colorectal carcinoma (CRC). We identified a tumor cell specific, STAT1-centered, immune signature expressed by the MSI-H tumor cells. We then showed that long, but not short, exposure to Interferon-γ induces a similar signature in vitro. We identified 10 different temporal protein expression patterns, classifying the Interferon-γ protein temporal regulation in CRC. Our data sheds light on the changes that tumor cells undergo under long-term immunological pressure in vivo, the importance of STAT proteins in specific biological scenarios. The data generated could help find novel clinical biomarkers and therapeutic approaches.


2006 ◽  
Author(s):  
Robert J. Zawadzki ◽  
Steven M. Jones ◽  
Mingtao Zhao ◽  
Stacey S. Choi ◽  
Sophie S. Laut ◽  
...  

Author(s):  
Marie E. Burns ◽  
Emily S. Levine ◽  
Eric B. Miller ◽  
Azhar Zam ◽  
Pengfei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document